1,407 research outputs found
The structures, binding energies and vibrational frequencies of Ca3 and Ca4: An application of the CCSD(T) method
The Ca3 and Ca4 metallic clusters have been investigated using state-of-the-art ab initio quantum mechanical methods. Large atomic natural orbital basis sets have been used in conjunction with the singles and doubles coupled-cluster (CCSD) method, a coupled-cluster method that includes a perturbational estimate of connected triple excitations, denoted CCSD(T), and the multireference configuration interaction (MRCI) method. The equilibrium geometries, binding energies and harmonic vibrational frequencies have been determined with each of the methods so that the accuracy of the coupled-cluster methods may be assessed. Since the CCSD(T) method reproduces the MRCI results very well, cubic and quartic force fields of Ca3 and Ca4 have been determined using this approach and used to evaluate the fundamental vibrational frequencies. The infrared intensities of both the e' mode of Ca3 and the t2 mode of Ca4 are found to be small. The results obtained in this study are compared and contrasted with those from our earlier studies on small Be and Mg clusters
Theoretical investigations of the structures and binding energies of Be(sub n) and Mg(sub n) (n = 3-5) clusters
Researchers determined the equilibrium geometries and binding energies of Be and Mg trimers, tetramers and pentamers using single and double excitation coupled cluster (CCSD) and complete active space self-consistent-field (CASSCF) multireference configuration interaction (MRCI) wave functions in conjunction with extended atomic basis sets. Best estimates of the cluster binding energies are 24, 83 and 110 kcal/mole for Be3, Be4 and Be5; and 9, 31 and 41 kcal/mole for Mg3, Mg4 and Mg5, respectively. A comparison of the MRCI and CCSD results shows that even the best single-reference approach (limited to single and double excitations) is not capable of quantitative accuracy in determining the binding energies of Be and Mg clusters
Comparison of the quadratic configuration interaction and coupled cluster approaches to electron correlation including the effect of triple excitations
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results
Automatically generated Coulomb fitting basis sets: design and accuracy for systems containing H to Kr
For intermediate sized chemical systems the use of an auxiliary basis set (ABS) to fit the charge density provides a useful means of accelerating the performance of various quantum chemical methods. As a consequence much effort has been devoted to the design of various ABSs. This paper explores a fundamentally new approach where the ABS is created dynamically based on the specific orbital basis set (OBS) being used. The new approach includes a parameter that is used to coalesce candidate fitting functions together but which can also be used to provide some coarse grain control over the number of functions in the ABS. The accuracy of the new automatically generated ABS (auto-ABS) is systemically studied for a variety of small systems containing the elements H-Kr. Errors in the Coulomb energy computed using auto-ABS and with a variety of OBSs are shown to be small compared to errors in the Hartree-Fock energy due to incompleteness in the OBS. In contrast to fixed size ABSs, the use of auto-ABS is shown to lead to smaller errors as the size (quality) of the OBS is expanded. The performance of auto-ABS is also compared with the use of the recently proposed universal fitting sets [Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)] for 180 compounds containing atoms from H to Kr.This work is funded by the Australian Research Council
Linkage Grant Nos. LP0347178 and LP0774896, and is in
association with Gaussian Inc. and Sun Microsystems
Entanglement of Pure Two-Mode Gaussian States
The entanglement of general pure Gaussian two-mode states is examined in
terms of the coefficients of the quadrature components of the wavefunction. The
entanglement criterion and the entanglement of formation are directly evaluated
as a function of these coefficients, without the need for deriving local
unitary transformations. These reproduce the results of other methods for the
special case of symmetric pure states which employ a relation between squeezed
states and Einstein-Podolsky-Rosen correlations. The modification of the
quadrature coefficients and the corresponding entanglement due to application
of various optical elements is also derived.Comment: 12 page
Two Qubits in the Dirac Representation
A general two qubit system expressed in terms of the complete set of unit and
fifteen traceless, Hermitian Dirac matrices, is shown to exhibit novel features
of this system. The well-known physical interpretations associated with the
relativistic Dirac equation involving the symmetry operations of time-reversal
T, charge conjugation C, parity P, and their products are reinterpreted here by
examining their action on the basic Bell states. The transformation properties
of the Bell basis states under these symmetry operations also reveal that C is
the only operator that does not mix the Bell states whereas all others do. In a
similar fashion, expressing the various logic gates introduced in the subject
of quantum computers in terms of the Dirac matrices shows for example, that the
NOT gate is related to the product of time-reversal and parity operators.Comment: 11 page
Commensurability oscillations in the rf conductivity of unidirectional lateral superlattices: measurement of anisotropic conductivity by coplanar waveguide
We have measured the rf magnetoconductivity of unidirectional lateral
superlattices (ULSLs) by detecting the attenuation of microwave through a
coplanar waveguide placed on the surface. ULSL samples with the principal axis
of the modulation perpendicular (S_perp) and parallel (S_||) to the microwave
electric field are examined. For low microwave power, we observe expected
anisotropic behavior of the commensurability oscillations (CO), with CO in
samples S_perp and S_|| dominated by the diffusion and the collisional
contributions, respectively. Amplitude modulation of the Shubnikov-de Haas
oscillations is observed to be more prominent in sample S_||. The difference
between the two samples is washed out with the increase of the microwave power,
letting the diffusion contribution govern the CO in both samples. The failure
of the intended directional selectivity in the conductivity measured with high
microwave power is interpreted in terms of large-angle electron-phonon
scattering.Comment: 8 pages, 5 figure
Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons
Fundamental interactions induced by lattice vibrations on ultrafast time
scales become increasingly important for modern nanoscience and technology.
Experimental access to the physical properties of acoustic phonons in the THz
frequency range and over the entire Brillouin zone is crucial for understanding
electric and thermal transport in solids and their compounds. Here, we report
on the generation and nonlinear propagation of giant (1 percent) acoustic
strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast
surface plasmon interferometry. This new technique allows for unambiguous
characterization of arbitrary ultrafast acoustic transients. The giant acoustic
pulses experience substantial nonlinear reshaping already after a propagation
distance of 100 nm in a crystalline gold layer. Excellent agreement with the
Korteveg-de Vries model points to future quantitative nonlinear femtosecond
THz-ultrasonics at the nano-scale in metals at room temperature
Edge state transmission, duality relation and its implication to measurements
The duality in the Chalker-Coddington network model is examined. We are able
to write down a duality relation for the edge state transmission coefficient,
but only for a specific symmetric Hall geometry. Looking for broader
implication of the duality, we calculate the transmission coefficient in
terms of the conductivity and in the diffusive
limit. The edge state scattering problem is reduced to solving the diffusion
equation with two boundary conditions
and
.
We find that the resistances in the geometry considered are not necessarily
measures of the resistivity and () holds only
when is quantized. We conclude that duality alone is not sufficient
to explain the experimental findings of Shahar et al and that Landauer-Buttiker
argument does not render the additional condition, contrary to previous
expectation.Comment: 16 pages, 3 figures, to appear in Phys. Rev.
- …
