1,717 research outputs found

    Ionized gas at the edge of the Central Molecular Zone

    Full text link
    To determine the properties of the ionized gas at the edge of the CMZ near Sgr E we observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure lines at six positions with the GREAT instrument on SOFIA and in [C II] using Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C II] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. We detect two [C II] and [N II] velocity components, one along the line of sight to a CO molecular cloud at -207 km/s associated with Sgr E and the other at -174 km/s outside the edge of another CO cloud. From the [N II] emission we find that the average electron density is in the range of about 5 to 25 cm{-3} for these features. This electron density is much higher than that of the warm ionized medium in the disk. The column density of the CO-dark H2_2 layer in the -207 km/s cloud is about 1-2X10{21} cm{-2} in agreement with theoretical models. The CMZ extends further out in Galactic radius by 7 to 14 pc in ionized gas than it does in molecular gas traced by CO. The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 1e6 to 1e7 photons cm{-2} s{-1}, and/or efficient proton charge exchange with nitrogen, at temperatures of order 1e4 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation which are a potential sources of the EUV radiation that can ionize the gas. In addition X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.Comment: 12 pages, 9 figure

    Radiative and mechanical feedback into the molecular gas of NGC 253

    Get PDF
    Starburst galaxies are undergoing intense periods of star formation. Understanding the heating and cooling mechanisms in these galaxies can give us insight to the driving mechanisms that fuel the starburst. Molecular emission lines play a crucial role in the cooling of the excited gas. With SPIRE on the Herschel Space Observatory we have observed the rich molecular spectrum towards the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed and together with low-J line fluxes from ground based observations, these lines trace the excitation of CO. By studying the CO excitation ladder and comparing the intensities to models, we investigate whether the gas is excited by UV radiation, X-rays, cosmic rays, or turbulent heating. Comparing the 12^{12}CO and 13^{13}CO observations to large velocity gradient models and PDR models we find three main ISM phases. We estimate the density, temperature,and masses of these ISM phases. By adding 13^{13}CO, HCN, and HNC line intensities, we are able to constrain these degeneracies and determine the heating sources. The first ISM phase responsible for the low-J CO lines is excited by PDRs, but the second and third phases, responsible for the mid to high-J CO transitions, require an additional heating source. We find three possible combinations of models that can reproduce our observed molecular emission. Although we cannot determine which of these are preferable, we can conclude that mechanical heating is necessary to reproduce the observed molecular emission and cosmic ray heating is a negligible heating source. We then estimate the mass of each ISM phase; 6×1076\times 10^7 M_\odot for phase 1 (low-J CO lines), 3×1073\times 10^7 M_\odot for phase 2 (mid-J CO lines), and 9×1069\times 10^6 M_\odot for phase 3 (high-J CO lines) for a total system mass of 1×1081\times10^{8} M_\odot

    Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores

    Get PDF
    We study the origin of large abundances of complex organic molecules in the Galactic center (GC). We carried out a systematic study of the complex organic molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward 40 GC molecular clouds. Using the LTE approximation, we derived the physical properties of GC molecular clouds and the abundances of the complex molecules.The CH3OH abundance between clouds varies by nearly two orders of magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex organic molecules relative to that of CH3OH is basically independent of the CH3OH abundance, with variations of only a factor 4-8. The abundances of complex organic molecules in the GC are compared with those measured in hot cores and hot corinos, in which these complex molecules are also abundant. We find that both the abundance and the abundance ratios of the complex molecules relative to CH3OH in hot cores are similar to those found in the GC clouds. However, hot corinos show different abundance ratios than observed in hot cores and in GC clouds. The rather constant abundance of all the complex molecules relative to CH3OH suggests that all complex molecules are ejected from grain mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s are required to explain the high abundances in gas phase of complex organic molecules in the GC molecular clouds. The rather uniform abundance ratios in the GC clouds and in Galactic hot cores indicate a similar average composition of grain mantles in both kinds of regions. The Sickle and the Thermal Radio Arches, affected by UV radiation, show different relative abundances in the complex organic molecules due to the differentially photodissociation of these molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx, natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in A&A 2006. version 2. relocated figures and tables. Language editor suggestions. added reference

    HIFI Spectroscopy of H2O{\rm H_2O} submm Lines in Nuclei of Actively Star Forming Galaxies

    Get PDF
    We present a systematic survey of multiple velocity-resolved H2_2O spectra using Herschel/HIFI towards nine nearby actively star forming galaxies. The ground-state and low-excitation lines (Eup130K_{\rm up}\,\le 130\,{\rm K}) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130KEup350K130\,{\rm K}\, \le\, E_{\rm up}\,\le\,350\,{\rm K}) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2_2O data using a state-of-the-art 3D radiative transfer code which includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust- and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: A warm (Tdust4070KT_{\rm dust}\,\sim\,40-70\,{\rm K}), dense (n(H)105106cm3n({\rm H})\,\sim\,10^5-10^6\,{\rm cm^{-3}}) phase which dominates the emission of medium-excitation H2_2O lines. This gas phase also dominates the FIR emission and the CO intensities for Jup>8J_{\rm up} > 8. In addition a cold (Tdust2030KT_{\rm dust}\,\sim\,20-30\,{\rm K}), dense (n(H)104105cm3n({\rm H})\sim\,10^4- 10^5\,{\rm cm^{-3}}) more extended phase is present. It outputs the emission in the low-excitation H2_2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (Rs100_s\,\le\,100 pc) region is present which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with Eup300KE_{\rm up}\le300\,{\rm K} and Eup800KE_{\rm up}\le800\,{\rm K} in the warm and hot component, respectively. Higher energy levels are mainly excited by IR pumping.Comment: Accepted by ApJ, in pres

    Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines

    Get PDF
    We have mapped 20 molecular lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth UNSW-MOPS digital filter bank, obtaining \sim 2 km/s spectral and \sim 40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude -0.3 to 0.2 deg., including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6-0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest 8 lines. This is dominated by the first component, showing that the large-scale distribution of all molecules are very similar. We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete mapped region of the CMZ. We highlight the behaviour of the bright HCN, HNC and HCO+ line emission, together with that from the 13C isotopologues of these species, and compare the behaviour with that found in extra-galactic sources where the emission is unresolved spatially. We also find that the isotopologue line ratios (e.g. HCO+/H13CO+) rise significantly with increasing red-shifted velocity in some locations. Line luminosities are also calculated and compared to that of CO, as well as to line luminosities determined for external galaxies.Comment: 27 pages, 15 figures, 12 tables, accepted by MNRA

    On the evolution of the molecular line profiles induced by the propagation of C-shock waves

    Full text link
    We present the first results of the expected variations of the molecular line emission arising from material recently affected by C-shocks (shock precursors). Our parametric model of the structure of C-shocks has been coupled with a radiative transfer code to calculate the molecular excitation and line profiles of shock tracers such as SiO, and of ion and neutral molecules such as H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our results show that the SiO emission arising from the early stage of the magnetic precursor typically has very narrow line profiles slightly shifted in velocity with respect to the ambient cloud. This narrow emission is generated in the region where the bulk of the ion fluid has already slipped to larger velocities in the precursor as observed toward the young L1448-mm outflow. This strongly suggests that the detection of narrow SiO emission and of an ion enhancement in young shocks, is produced by the magnetic precursor of C-shocks. In addition, our model shows that the different velocity components observed toward this outflow can be explained by the coexistence of different shocks at different evolutionary stages, within the same beam of the single-dish observations.Comment: 7 pages, 4 figures, accepted for publication in Ap

    Disentangling the excitation conditions of the dense gas in M17 SW

    Get PDF
    We probe the chemical and energetic conditions in dense gas created by radiative feedback through observations of multiple CO, HCN and HCO+^+ transitions toward the dense core of M17 SW. We used the dual band receiver GREAT on board the SOFIA airborne telescope to obtain maps of the J=1615J=16-15, J=1211J=12-11, and J=1110J=11-10 transitions of 12^{12}CO. We compare these maps with corresponding APEX and IRAM 30m telescope data for low- and mid-JJ CO, HCN and HCO+^+ emission lines, including maps of the HCN J=87J=8-7 and HCO+^+ J=98J=9-8 transitions. The excitation conditions of 12^{12}CO, HCO+^+ and HCN are estimated with a two-phase non-LTE radiative transfer model of the line spectral energy distributions (LSEDs) at four selected positions. The energy balance at these positions is also studied. We obtained extensive LSEDs for the CO, HCN and HCO+^+ molecules toward M17 SW. The LSED shape, particularly the high-JJ tail of the CO lines observed with SOFIA/GREAT, is distinctive for the underlying excitation conditions. The critical magnetic field criterion implies that the cold cloudlets at two positions are partially controlled by processes that create and dissipate internal motions. Supersonic but sub-Alfv\'enic velocities in the cold component at most selected positions indicates that internal motions are likely MHD waves. Magnetic pressure dominates thermal pressure in both gas components at all selected positions, assuming random orientation of the magnetic field. The magnetic pressure of a constant magnetic field throughout all the gas phases can support the total internal pressure of the cold components, but it cannot support the internal pressure of the warm components. If the magnetic field scales as Bn2/3B \propto n^{2/3}, then the evolution of the cold cloudlets at two selected positions, and the warm cloudlets at all selected positions, will be determined by ambipolar diffusion.Comment: 26 pages, 13 figures, A&A accepte

    HIFI spectroscopy of low-level water transitions in M82

    Get PDF
    We present observations of the rotational ortho-water ground transition, the two lowest para-water transitions, and the ground transition of ionised ortho-water in the archetypal starburst galaxy M82, performed with the HIFI instrument on the Herschel Space Observatory. These observations are the first detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000) (1115\,GHz) lines in an extragalactic source. All three water lines show different spectral line profiles, underlining the need for high spectral resolution in interpreting line formation processes. Using the line shape of the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction with high spatial resolution CO observations, we show that the (ionised) water absorption arises from a ~2000 pc^2 region within the HIFI beam located about ~50 pc east of the dynamical centre of the galaxy. This region does not coincide with any of the known line emission peaks that have been identified in other molecular tracers, with the exception of HCO. Our data suggest that water and ionised water within this region have high (up to 75%) area-covering factors of the underlying continuum. This indicates that water is not associated with small, dense cores within the ISM of M82 but arises from a more widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&

    Tracing shocks and photodissociation in the Galactic center region

    Full text link
    We present a systematic study of the HNCO, C18O, 13CS, and C34S emission towards 13 selected molecular clouds in the Galactic center region. The molecular emission in these positions are used as templates of the different physical and chemical processes claimed to be dominant in the circumnuclear molecular gas of galaxies. The relative abundance of HNCO shows a variation of more than a factor of 20 amo ng the observed sources. The HNCO/13CS abundance ratio is highly contrasted (up to a factor of 30) between the shielded molecular clouds mostly affected by shocks, where HNCO is released to gas-phase from grain mantles, and those pervaded by an intense UV radiation field, where HNCO is photo-dissociated and CS production favored via ion reactions. We propose the relative HNCO to CS abundance ratio as a highly contrasted diagnostic tool to distinguish between the influence of shocks and/or the radiation field in the nuclear regions of galaxies and their relation to the evolutionary state of their nuclear star formation bursts.Comment: 25 pages, 5 figures, Accepted for publication in Ap

    Excitation of the molecular gas in the nuclear region of M82

    Get PDF
    We present high resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines are detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and a relatively low UV radiation field (GO = 10^2). The remaining gas is predominantly found in clouds with higher densities (n=10^5 cm^-3) and radiation fields (GO = 10^2.75), but somewhat lower column densities (N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n=10^6 cm^-3) and UV field (GO = 10^3.25). These results show the strength of multi-component modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter
    corecore