1,717 research outputs found
Ionized gas at the edge of the Central Molecular Zone
To determine the properties of the ionized gas at the edge of the CMZ near
Sgr E we observed a small portion of the edge of the CMZ near Sgr E with
spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure
lines at six positions with the GREAT instrument on SOFIA and in [C II] using
Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a
radiative transfer model to calculate the electron density of the gas and the
[C II] maps to illuminate the morphology of the ionized gas and model the
column density of CO-dark H2. We detect two [C II] and [N II] velocity
components, one along the line of sight to a CO molecular cloud at -207 km/s
associated with Sgr E and the other at -174 km/s outside the edge of another CO
cloud. From the [N II] emission we find that the average electron density is in
the range of about 5 to 25 cm{-3} for these features. This electron density is
much higher than that of the warm ionized medium in the disk. The column
density of the CO-dark H layer in the -207 km/s cloud is about 1-2X10{21}
cm{-2} in agreement with theoretical models. The CMZ extends further out in
Galactic radius by 7 to 14 pc in ionized gas than it does in molecular gas
traced by CO. The edge of the CMZ likely contains dense hot ionized gas
surrounding the neutral molecular material. The high fractional abundance of N+
and high electron density require an intense EUV field with a photon flux of
order 1e6 to 1e7 photons cm{-2} s{-1}, and/or efficient proton charge exchange
with nitrogen, at temperatures of order 1e4 K, and/or a large flux of X-rays.
Sgr E is a region of massive star formation which are a potential sources of
the EUV radiation that can ionize the gas. In addition X-ray sources and the
diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.Comment: 12 pages, 9 figure
Radiative and mechanical feedback into the molecular gas of NGC 253
Starburst galaxies are undergoing intense periods of star formation.
Understanding the heating and cooling mechanisms in these galaxies can give us
insight to the driving mechanisms that fuel the starburst. Molecular emission
lines play a crucial role in the cooling of the excited gas. With SPIRE on the
Herschel Space Observatory we have observed the rich molecular spectrum towards
the central region of NGC 253. CO transitions from J=4-3 to 13-12 are observed
and together with low-J line fluxes from ground based observations, these lines
trace the excitation of CO. By studying the CO excitation ladder and comparing
the intensities to models, we investigate whether the gas is excited by UV
radiation, X-rays, cosmic rays, or turbulent heating. Comparing the CO
and CO observations to large velocity gradient models and PDR models we
find three main ISM phases. We estimate the density, temperature,and masses of
these ISM phases. By adding CO, HCN, and HNC line intensities, we are
able to constrain these degeneracies and determine the heating sources. The
first ISM phase responsible for the low-J CO lines is excited by PDRs, but the
second and third phases, responsible for the mid to high-J CO transitions,
require an additional heating source. We find three possible combinations of
models that can reproduce our observed molecular emission. Although we cannot
determine which of these are preferable, we can conclude that mechanical
heating is necessary to reproduce the observed molecular emission and cosmic
ray heating is a negligible heating source. We then estimate the mass of each
ISM phase; M for phase 1 (low-J CO lines), M for phase 2 (mid-J CO lines), and M for
phase 3 (high-J CO lines) for a total system mass of M
Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores
We study the origin of large abundances of complex organic molecules in the
Galactic center (GC). We carried out a systematic study of the complex organic
molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward
40 GC molecular clouds. Using the LTE approximation, we derived the physical
properties of GC molecular clouds and the abundances of the complex
molecules.The CH3OH abundance between clouds varies by nearly two orders of
magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex
organic molecules relative to that of CH3OH is basically independent of the
CH3OH abundance, with variations of only a factor 4-8. The abundances of
complex organic molecules in the GC are compared with those measured in hot
cores and hot corinos, in which these complex molecules are also abundant. We
find that both the abundance and the abundance ratios of the complex molecules
relative to CH3OH in hot cores are similar to those found in the GC clouds.
However, hot corinos show different abundance ratios than observed in hot cores
and in GC clouds. The rather constant abundance of all the complex molecules
relative to CH3OH suggests that all complex molecules are ejected from grain
mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s
are required to explain the high abundances in gas phase of complex organic
molecules in the GC molecular clouds. The rather uniform abundance ratios in
the GC clouds and in Galactic hot cores indicate a similar average composition
of grain mantles in both kinds of regions. The Sickle and the Thermal Radio
Arches, affected by UV radiation, show different relative abundances in the
complex organic molecules due to the differentially photodissociation of these
molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx,
natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in
A&A 2006. version 2. relocated figures and tables. Language editor
suggestions. added reference
HIFI Spectroscopy of submm Lines in Nuclei of Actively Star Forming Galaxies
We present a systematic survey of multiple velocity-resolved HO spectra
using Herschel/HIFI towards nine nearby actively star forming galaxies. The
ground-state and low-excitation lines (E) show
profiles with emission and absorption blended together, while absorption-free
medium-excitation lines ()
typically display line shapes similar to CO. We analyze the HIFI observation
together with archival SPIRE/PACS HO data using a state-of-the-art 3D
radiative transfer code which includes the interaction between continuum and
line emission. The water excitation models are combined with information on the
dust- and CO spectral line energy distribution to determine the physical
structure of the interstellar medium (ISM). We identify two ISM components that
are common to all galaxies: A warm (),
dense () phase which dominates the
emission of medium-excitation HO lines. This gas phase also dominates the
FIR emission and the CO intensities for . In addition a cold
(), dense () more extended phase is present. It outputs the emission
in the low-excitation HO lines and typically also produces the prominent
line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk
231) an even hotter and more compact (R pc) region is present
which is possibly linked to AGN activity. We find that collisions dominate the
water excitation in the cold gas and for lines with
and in the warm and hot component, respectively.
Higher energy levels are mainly excited by IR pumping.Comment: Accepted by ApJ, in pres
Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines
We have mapped 20 molecular lines in the Central Molecular Zone (CMZ) around
the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m
Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth UNSW-MOPS
digital filter bank, obtaining \sim 2 km/s spectral and \sim 40 arcsec spatial
resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+,
SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+
molecules. The area covered is Galactic longitude -0.7 to 1.8 deg. and latitude
-0.3 to 0.2 deg., including the bright dust cores around Sgr A, Sgr B2, Sgr C
and G1.6-0.025. We present images from this study and conduct a principal
component analysis on the integrated emission from the brightest 8 lines. This
is dominated by the first component, showing that the large-scale distribution
of all molecules are very similar. We examine the line ratios and optical
depths in selected apertures around the bright dust cores, as well as for the
complete mapped region of the CMZ. We highlight the behaviour of the bright
HCN, HNC and HCO+ line emission, together with that from the 13C isotopologues
of these species, and compare the behaviour with that found in extra-galactic
sources where the emission is unresolved spatially. We also find that the
isotopologue line ratios (e.g. HCO+/H13CO+) rise significantly with increasing
red-shifted velocity in some locations. Line luminosities are also calculated
and compared to that of CO, as well as to line luminosities determined for
external galaxies.Comment: 27 pages, 15 figures, 12 tables, accepted by MNRA
On the evolution of the molecular line profiles induced by the propagation of C-shock waves
We present the first results of the expected variations of the molecular line
emission arising from material recently affected by C-shocks (shock
precursors). Our parametric model of the structure of C-shocks has been coupled
with a radiative transfer code to calculate the molecular excitation and line
profiles of shock tracers such as SiO, and of ion and neutral molecules such as
H13CO+ and HN13C, as the shock propagates through the unperturbed medium. Our
results show that the SiO emission arising from the early stage of the magnetic
precursor typically has very narrow line profiles slightly shifted in velocity
with respect to the ambient cloud. This narrow emission is generated in the
region where the bulk of the ion fluid has already slipped to larger velocities
in the precursor as observed toward the young L1448-mm outflow. This strongly
suggests that the detection of narrow SiO emission and of an ion enhancement in
young shocks, is produced by the magnetic precursor of C-shocks. In addition,
our model shows that the different velocity components observed toward this
outflow can be explained by the coexistence of different shocks at different
evolutionary stages, within the same beam of the single-dish observations.Comment: 7 pages, 4 figures, accepted for publication in Ap
Disentangling the excitation conditions of the dense gas in M17 SW
We probe the chemical and energetic conditions in dense gas created by
radiative feedback through observations of multiple CO, HCN and HCO
transitions toward the dense core of M17 SW. We used the dual band receiver
GREAT on board the SOFIA airborne telescope to obtain maps of the ,
, and transitions of CO. We compare these maps with
corresponding APEX and IRAM 30m telescope data for low- and mid- CO, HCN and
HCO emission lines, including maps of the HCN and HCO
transitions. The excitation conditions of CO, HCO and HCN are
estimated with a two-phase non-LTE radiative transfer model of the line
spectral energy distributions (LSEDs) at four selected positions. The energy
balance at these positions is also studied. We obtained extensive LSEDs for the
CO, HCN and HCO molecules toward M17 SW. The LSED shape, particularly the
high- tail of the CO lines observed with SOFIA/GREAT, is distinctive for the
underlying excitation conditions. The critical magnetic field criterion implies
that the cold cloudlets at two positions are partially controlled by processes
that create and dissipate internal motions. Supersonic but sub-Alfv\'enic
velocities in the cold component at most selected positions indicates that
internal motions are likely MHD waves. Magnetic pressure dominates thermal
pressure in both gas components at all selected positions, assuming random
orientation of the magnetic field. The magnetic pressure of a constant magnetic
field throughout all the gas phases can support the total internal pressure of
the cold components, but it cannot support the internal pressure of the warm
components. If the magnetic field scales as , then the
evolution of the cold cloudlets at two selected positions, and the warm
cloudlets at all selected positions, will be determined by ambipolar diffusion.Comment: 26 pages, 13 figures, A&A accepte
HIFI spectroscopy of low-level water transitions in M82
We present observations of the rotational ortho-water ground transition, the
two lowest para-water transitions, and the ground transition of ionised
ortho-water in the archetypal starburst galaxy M82, performed with the HIFI
instrument on the Herschel Space Observatory. These observations are the first
detections of the para-H2O(111-000) (1113\,GHz) and ortho-H2O+(111-000)
(1115\,GHz) lines in an extragalactic source. All three water lines show
different spectral line profiles, underlining the need for high spectral
resolution in interpreting line formation processes. Using the line shape of
the para-H2O(111-000) and ortho-H2O+(111-000) absorption profile in conjunction
with high spatial resolution CO observations, we show that the (ionised) water
absorption arises from a ~2000 pc^2 region within the HIFI beam located about
~50 pc east of the dynamical centre of the galaxy. This region does not
coincide with any of the known line emission peaks that have been identified in
other molecular tracers, with the exception of HCO. Our data suggest that water
and ionised water within this region have high (up to 75%) area-covering
factors of the underlying continuum. This indicates that water is not
associated with small, dense cores within the ISM of M82 but arises from a more
widespread diffuse gas component.Comment: 5 pages, 4 figures. Accepted for publication in A&
Tracing shocks and photodissociation in the Galactic center region
We present a systematic study of the HNCO, C18O, 13CS, and C34S emission
towards 13 selected molecular clouds in the Galactic center region. The
molecular emission in these positions are used as templates of the different
physical and chemical processes claimed to be dominant in the circumnuclear
molecular gas of galaxies. The relative abundance of HNCO shows a variation of
more than a factor of 20 amo ng the observed sources. The HNCO/13CS abundance
ratio is highly contrasted (up to a factor of 30) between the shielded
molecular clouds mostly affected by shocks, where HNCO is released to gas-phase
from grain mantles, and those pervaded by an intense UV radiation field, where
HNCO is photo-dissociated and CS production favored via ion reactions. We
propose the relative HNCO to CS abundance ratio as a highly contrasted
diagnostic tool to distinguish between the influence of shocks and/or the
radiation field in the nuclear regions of galaxies and their relation to the
evolutionary state of their nuclear star formation bursts.Comment: 25 pages, 5 figures, Accepted for publication in Ap
Excitation of the molecular gas in the nuclear region of M82
We present high resolution HIFI spectroscopy of the nucleus of the
archetypical starburst galaxy M82. Six 12CO lines, 2 13CO lines and 4
fine-structure lines are detected. Besides showing the effects of the overall
velocity structure of the nuclear region, the line profiles also indicate the
presence of multiple components with different optical depths, temperatures and
densities in the observing beam. The data have been interpreted using a grid of
PDR models. It is found that the majority of the molecular gas is in low
density (n=10^3.5 cm^-3) clouds, with column densities of N_H=10^21.5 cm^-2 and
a relatively low UV radiation field (GO = 10^2). The remaining gas is
predominantly found in clouds with higher densities (n=10^5 cm^-3) and
radiation fields (GO = 10^2.75), but somewhat lower column densities
(N_H=10^21.2 cm^-2). The highest J CO lines are dominated by a small (1%
relative surface filling) component, with an even higher density (n=10^6 cm^-3)
and UV field (GO = 10^3.25). These results show the strength of multi-component
modeling for the interpretation of the integrated properties of galaxies.Comment: Accepted for publication in A&A Letter
- …
