7,567 research outputs found

    Overlap of quasiparticle random-phase approximation states for nuclear matrix elements of the neutrino-less double beta decay

    Get PDF
    Quasiparticle random-phase approximation (QRPA) is applied to two nuclei, and overlap of the QRPA excited states based on the different nuclei is calculated. The aim is to calculate the overlap of intermediate nuclear states of the double-beta decay. We use the like-particle QRPA after the closure approximation is applied to the nuclear matrix elements. The overlap is calculated rigorously by making use of the explicit equation of the QRPA ground state. The formulation of the overlap is shown, and a test calculation is performed. The effectiveness of the truncations used is shown.Comment: 3 minor corrections and 1 minor chang

    Revisiting the displacement operator for quantum systems with position-dependent mass

    Full text link
    Recently R. N. Costa Filho et al. (PRA 84, 050102(R) (2011)) have introduced a position dependent infinitesimal translation operator which corresponds to a position dependent linear momentum and consequently to a position dependent effective mass quantum particle. Although there is no doubt in novelty of the idea and the formalism, we believe that some aspects of the quantum mechanics could be complemented in their original work. Here in this letter first we address those points and then an alternative will be introduced. Finally we apply the formalism for a quantum particle under a null potential confined in a square well and the results will be compared with those in the paper mentioned above.Comment: 4 pages, 3 figures. Final version to appear in Phys. Rev.

    Berry phase and backbending

    Full text link
    Backbending is a typical phenomenon in the rotational spectra of superfluid nuclei. It is caused by the rotational alignment of a pair of nucleons and depends on topological properties of the Hartree-Fock-Bogoliubov spectrum in the rotating frame characterized by diabolic points and Berry phases.Comment: 15 pages, 6 figures, chapter in "Fifty Years of Nuclear BCS", eds. R.A. Broglia and V.Zelevinsk

    Superdeformations in Relativistic and Non-Relativistic Mean Field Theories

    Get PDF
    The applications of the extensions of relativistic mean field (RMF) theory to the rotating frame, such as cranked relativistic mean field (CRMF) theory and cranked relativistic Hartree-Bogoliubov (CRHB) theory, for the description of superdeformed bands in the A60A\sim 60, 140-150 and 190 mass regions are overviewed and compared briefly with the results obtained in non-relativistic mean field theories.Comment: 18 pages including 5 figures in PostScript, requires epsf.sty, invited talk presented at the International Conference on Achievements and Perspectives in Nuclear Structure, Crete, Greece, July 11-17, 1999, will be published in Physica Script

    Cranked relativistic Hartree-Bogoliubov theory: Superdeformation in the A190A\sim 190 mass region

    Get PDF
    A systematic investigation of the yrast superdeformed (SD) rotational bands in even-even nuclei of the A190A\sim 190 mass region has been performed within the framework of the cranked relativistic Hartree-Bogoliubov theory. The particle-hole channel of this theory is treated fully relativistically, while a finite range two-body force of Gogny type is used in the particle-particle (pairing) channel. Using the well established parameter sets NL1 for the Lagrangian and D1S for the Gogny force, very good description of experimental data is obtained with no adjustable parameters.Comment: 5 pages, 2 Postscript figures, uses sprocl.sty, contribution to the Proceedings of the International Conference ``Bologna 2000, Structure of the Nucleus at the Dawn of the Century'

    Properties of superdeformed fission isomers in the cranked relativistic Hartree-Bogoliubov theory

    Full text link
    The rotational and deformation properties of superdeformed fission isomers in the A240A\sim 240 mass region have been investigated within the framework of the cranked relativistic Hartree-Bogoliubov theory. The dependence of the results of the calculations on the parametrization of the RMF Lagrangian has been studied. The rotational properties are best described by the NL1 force.Comment: 5 pages, uses epsf.sty and hip-artc.sty, 1 PostScript figure, contribution to the Proceedings of the International Symposium on Exotic Nuclear Structures, May 15-20, 2000, Debrecen, Hungar

    Perturbative HFB model for many-body pairing correlations

    Get PDF
    We develop a perturbative model to treat the off-diagonal components in the Hartree-Fock-Bogoliubov (HFB) transformation matrix, which are neglected in the BCS approximation. Applying the perturbative model to a weakly bound nucleus 84^{84}Ni, it is shown that the perturbative approach reproduces well the solutions of the HFB method both for the quasi-particle energies and the radial dependence of quasi-particle wave functions. We find that the non-resonant part of the continuum single-particle state can acquire an appreciable occupation probability when there exists a weakly bound state close to the Fermi surface. This result originates from the strong coupling between the continuum particle state and the weakly bound state, and is absent in the BCS approximation. The limitation of the BCS approximation is pointed out in comparison with the HFB and the present perturbative model.Comment: 6 pages, 5 eps figure

    The Proton Electric Pygmy Dipole Resonance

    Get PDF
    The evolution of the low-lying E1 strength in proton-rich nuclei is analyzed in the framework of the self-consistent relativistic Hartree-Bogoliubov (RHB) model and the relativistic quasiparticle random-phase approximation (RQRPA). Model calculations are performed for a series of N=20 isotones and Z=18 isotopes. For nuclei close to the proton drip-line, the occurrence of pronounced dipole peaks is predicted in the low-energy region below 10 MeV excitation energy. From the analysis of the proton and neutron transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 7 pages, 4 figures, to be published in Phys. Rev. Let

    Collective Motion of Polarized Dipolar Fermi Gases in the Hydrodynamic Regime

    Get PDF
    Recently, a seminal STIRAP experiment allowed the creation of 40K-87Rb molecules in the rovibrational ground state [K.-K. Ni et al., Science 322, 231 (2008)]. In order to describe such a polarized dipolar Fermi gas in the hydrodynamic regime, we work out a variational time-dependent Hartree-Fock approach. With this we calculate dynamical properties of such a system as, for instance, the frequencies of the low-lying excitations and the time-of-flight expansion. We find that the dipole-dipole interaction induces anisotropic breathing oscillations in momentum space. In addition, after release from the trap, the momentum distribution becomes asymptotically isotropic, while the particle density becomes anisotropic
    corecore