14,044 research outputs found
Entanglement, Holography and Causal Diamonds
We argue that the degrees of freedom in a d-dimensional CFT can be
re-organized in an insightful way by studying observables on the moduli space
of causal diamonds (or equivalently, the space of pairs of timelike separated
points). This 2d-dimensional space naturally captures some of the fundamental
nonlocality and causal structure inherent in the entanglement of CFT states.
For any primary CFT operator, we construct an observable on this space, which
is defined by smearing the associated one-point function over causal diamonds.
Known examples of such quantities are the entanglement entropy of vacuum
excitations and its higher spin generalizations. We show that in holographic
CFTs, these observables are given by suitably defined integrals of dual bulk
fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we
explain connections to the operator product expansion and the first law of
entanglement entropy from this unifying point of view. We demonstrate that for
small perturbations of the vacuum, our observables obey linear two-derivative
equations of motion on the space of causal diamonds. In two dimensions, the
latter is given by a product of two copies of a two-dimensional de Sitter
space. For a class of universal states, we show that the entanglement entropy
and its spin-three generalization obey nonlinear equations of motion with local
interactions on this moduli space, which can be identified with Liouville and
Toda equations, respectively. This suggests the possibility of extending the
definition of our new observables beyond the linear level more generally and in
such a way that they give rise to new dynamically interacting theories on the
moduli space of causal diamonds. Various challenges one has to face in order to
implement this idea are discussed.Comment: 84 pages, 12 figures; v2: expanded discussion on constraints in
section 7, matches published versio
Identification of a Likely Radio Counterpart of the Rapid Burster
We have identified a likely radio counterpart to the low-mass X-ray binary
MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio
on/off behavior correlated with the X-ray on/off behavior as observed by the
RXTE/ASM during six VLA observations. The probability of an unrelated, randomly
varying background source duplicating this behavior is 1-3% depending on the
correlation time scale. The location of the radio source is RA 17h 33m 24.61s;
Dec -33d 23' 19.8" (J2000), +/- 0.1". We do not detect 8.4 GHz radio emission
coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to
X-ray emission during such bursts is constrained to be below the ratio observed
during X-ray persistent emission at the 2.9-sigma level. Synchrotron bubble
models of the radio emission can provide a reasonable fit to the full data set,
collected over several outbursts, assuming that the radio evolution is the same
from outburst to outburst, but given the physical constraints the emission is
more likely to be due to ~hour-long radio flares such as have been observed
from the X-ray binary GRS 1915+105.Comment: 28 pages, 4 figures; accepted for publication in ApJ (no changes
On Writ of Certiorari to the United States Court of Appeals for the Ninth Circuit, Brief of Product Liability Advisory Council, Inc., National Association of Manufacturers, Business Roundtable, and Chemical Manufacturers Association as Amici Curiae in Support of Respondent, William Daubert and Joyce Daubert, Individually and as Guardians Ad Litem for Jason Daubert, and Anita De Young, Individually and as Gaurdian Ad Litem for Eric Schuller v. Merrell Dow Pharmaceuticals, Inc.
The Federal Rules of Evidence exclude expert scientific testimony when it has been developed without regard for accepted scientific methods.
This case focuses on expert scientific evidence. Such evidence plays a vital and often dispositive role in modern litigation. For scientific evidence to be helpful to the factfinder it must meet some minimal threshold of reliability. To hold otherwise would be to allow a system of adjudication based more on chance than on reason
Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways
Electrostatic Levitation for Studies of Materials for Additive and In-Space Manufacturing
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation
Recommended from our members
The implications of an idealised large-scale circulation for mechanical work done by tropical convection
A thermodynamic analysis is presented of an overturning circulation simulated by two cloud resolving models, coupled by a weak temperature gradient
parametrisation. Taken together, they represent two separated regions over
different sea surface temperatures, and the coupling represents an idealised
large-scale circulation such as the Walker circulation. It is demonstrated that a
thermodynamic budget linking net heat input to the generation of mechanical
energy can be partitioned into contributions from the large-scale interaction
between the two regions, as represented by the weak temperature gradient
approximation, and from convective motions in the active warm region and
the suppressed cool region. Model results imply that such thermodynamic
diagnostics for the aggregate system are barely affected by the strength of
the coupling, even its introduction, or by the SST contrast between the regions. This indicates that the weak temperature gradient parametrisation does
not introduce anomalous thermodynamic behaviour. We find that the vertical
kinetic energy associated with the large-scale circulation is more than three
orders of magnitude smaller than the typical vertical kinetic energy in each
region. However, even with very weak coupling circulations, the contrast between the thermodynamic budget terms for the suppressed and active regions
is strong and is relatively insensitive to the degree of the coupling. Additionally, scaling arguments are developed for the relative values of the terms in
the mechanical energy budget
The Fibers and Range of Reduction Graphs in Ciliates
The biological process of gene assembly has been modeled based on three types
of string rewriting rules, called string pointer rules, defined on so-called
legal strings. It has been shown that reduction graphs, graphs that are based
on the notion of breakpoint graph in the theory of sorting by reversal, for
legal strings provide valuable insights into the gene assembly process. We
characterize which legal strings obtain the same reduction graph (up to
isomorphism), and moreover we characterize which graphs are (isomorphic to)
reduction graphs.Comment: 24 pages, 13 figure
Electrostatic Levitation for Studies of Additive Manufacturing Materials for Extreme Environments
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center (MSFC) is a national resource for researchers developing advanced materials for new technologies. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or data-gathering instrumentation
Factorization of Seiberg-Witten Curves and Compactification to Three Dimensions
We continue our study of nonperturbative superpotentials of four-dimensional
N=2 supersymmetric gauge theories with gauge group U(N) on R^3 x S^1, broken to
N=1 due to a classical superpotential. In a previous paper, hep-th/0304061, we
discussed how the low-energy quantum superpotential can be obtained by
substituting the Lax matrix of the underlying integrable system directly into
the classical superpotential. In this paper we prove algebraically that this
recipe yields the correct factorization of the Seiberg-Witten curves, which is
an important check of the conjecture. We will also give an independent proof
using the algebraic-geometrical interpretation of the underlying integrable
system.Comment: laTeX, 14 pages, uses AMSmat
- …
