939 research outputs found
Onset voltage shift due to non-zero Landau ground state level in coherent magnetotransport
Coherent electron transport in double-barrier heterostructures with parallel
electric and magnetic fields is analyzed theoretically and with the aid of a
quantum simulator accounting for 3-dimensional transport effects. The
onset-voltage shift induced by the magnetic field in resonant tunneling diodes,
which was previously attributed to the cyclotron frequency inside the
well is found to arise from an upward shift of the non-zero ground (lowest)
Landau state energy in the entire quantum region where coherent transport takes
place. The spatial dependence of the cyclotron frequency is accounted for and
verified to have a negligible impact on resonant tunneling for the device and
magnetic field strength considered. A correction term for the onset-voltage
shift arising from the magnetic field dependence of the chemical potential is
also derived. The Landau ground state with its nonvanishing finite harmonic
oscillator energy is verified however to be the principal
contributor to the onset voltage shift at low temperatures.Comment: 13 pages, and 3 figures. Accepted for publication in Phys. Rev.
Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography
Using far field optical lithography, a single quantum dot is positioned
within a pillar microcavity with a 50 nm accuracy. The lithography is performed
in-situ at 10 K while measuring the quantum dot emission. Deterministic
spectral and spatial matching of the cavity-dot system is achieved in a single
step process and evidenced by the observation of strong Purcell effect.
Deterministic coupling of two quantum dots to the same optical mode is
achieved, a milestone for quantum computing.Comment: Modified version: new title, additional experimental data in figure
Nonequilibrium Green's function theory for transport and gain properties of quantum cascade structures
The transport and gain properties of quantum cascade (QC) structures are
investigated using a nonequilibrium Green's function (NGF) theory which
includes quantum effects beyond a Boltzmann transport description. In the NGF
theory, we include interface roughness, impurity, and electron-phonon
scattering processes within a self-consistent Born approximation, and
electron-electron scattering in a mean-field approximation. With this theory we
obtain a description of the nonequilibrium stationary state of QC structures
under an applied bias, and hence we determine transport properties, such as the
current-voltage characteristic of these structures. We define two contributions
to the current, one contribution driven by the scattering-free part of the
Hamiltonian, and the other driven by the scattering Hamiltonian. We find that
the dominant part of the current in these structures, in contrast to simple
superlattice structures, is governed mainly by the scattering Hamiltonian. In
addition, by considering the linear response of the stationary state of the
structure to an applied optical field, we determine the linear susceptibility,
and hence the gain or absorption spectra of the structure. A comparison of the
spectra obtained from the more rigorous NGF theory with simpler models shows
that the spectra tend to be offset to higher values in the simpler theories.Comment: 44 pages, 16 figures, appearing in Physical Review B Dec 200
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
The generalized forward spin polarizabilities and of
the neutron have been extracted for the first time in a range from 0.1 to
0.9 GeV. Since is sensitive to nucleon resonances and
is insensitive to the resonance, it is expected that the
pair of forward spin polarizabilities should provide benchmark tests of the
current understanding of the chiral dynamics of QCD. The new results on
show significant disagreement with Chiral Perturbation Theory
calculations, while the data for at low are in good agreement
with a next-to-lead order Relativistic Baryon Chiral Perturbation theory
calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
Search for a new gauge boson in the Experiment (APEX)
We present a search at Jefferson Laboratory for new forces mediated by
sub-GeV vector bosons with weak coupling to electrons. Such a
particle can be produced in electron-nucleus fixed-target scattering and
then decay to an pair, producing a narrow resonance in the QED trident
spectrum. Using APEX test run data, we searched in the mass range 175--250 MeV,
found no evidence for an reaction, and set an upper limit of
. Our findings demonstrate that fixed-target
searches can explore a new, wide, and important range of masses and couplings
for sub-GeV forces.Comment: 5 pages, 5 figures, references adde
Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime
We present measurements of the ep->ep pi^0 cross section extracted at two
values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson
Lab Hall A. The kinematic range allows to study the evolution of the extracted
hadronic tensor as a function of Q^2 and W. Results will be confronted with
Regge inspired calculations and GPD predictions. An intepretation of our data
within the framework of semi-inclusive deep inelastic scattering has also been
attempted
Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target
We have measured the spin structure functions and of He in a
double-spin experiment by inclusively scattering polarized electrons at
energies ranging from 0.862 to 5.07 GeV off a polarized He target at a
15.5 scattering angle. Excitation energies covered the resonance and
the onset of the deep inelastic regions. We have determined for the first time
the evolution of ,
and for the neutron in the range 0.1 GeV 0.9 GeV with good precision. displays a smooth
variation from high to low . The Burkhardt-Cottingham sum rule holds
within uncertainties and is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes
data in Fig. 2 (top panel) and their corresponding reference. Updated the low
x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT
calculation
Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory
The deuteron elastic structure function A(Q^2) has been extracted in the Q^2
range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic
electron-deuteron scattering in coincidence using the Hall A Facility of
Jefferson Laboratory. The data are compared to theoretical models based on the
impulse approximation with inclusion of meson-exchange currents, and to
predictions of quark dimensional scaling and perturbative quantum
chromodynamicsComment: Submitted to Physical Review Letter
Display of probability densities for data from a continuous distribution
Based on cumulative distribution functions, Fourier series expansion and
Kolmogorov tests, we present a simple method to display probability densities
for data drawn from a continuous distribution. It is often more efficient than
using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV,
Athens, GA, 201
- …
