9,395 research outputs found

    The VLA Survey of the Chandra Deep Field South. V. Evolution and Luminosity Functions of sub-mJy radio sources and the issue of radio emission in radio-quiet AGN

    Full text link
    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South VLA survey, which reaches a flux density limit at 1.4 GHz of 43 microJy at the field center and redshift ~5, and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGN). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies from AGN and radio-quiet from radio-loud AGN. We confirm our previous result that star-forming galaxies become dominant only below 0.1 mJy. The sub-mJy radio sky turns out to be a complex mix of star-forming galaxies and radio-quiet AGN evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P > 3 10^24 W/Hz) AGN. Our results suggest that radio emission from radio-quiet AGN is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGN can be explained by the co-existence of two components, one non-evolving and AGN-related and one evolving and star-formation-related. Radio-quiet AGN are an important class of sub-mJy sources, accounting for ~30% of the sample and ~60% of all AGN, and outnumbering radio-loud AGN at < 0.1 mJy. This implies that future, large area sub-mJy surveys, given the appropriate ancillary multi-wavelength data, have the potential of being able to assemble vast samples of radio-quiet AGN by-passing the problems of obscuration, which plague the optical and soft X-ray bands.Comment: 19 pages, 14 figures (8 in color), accepted for publication in the Astrophysical Journa

    A FIRST DETERMINATION OF THE SURFACE DENSITY OF GALAXY CLUSTERS AT VERY LOW X--RAY FLUXES

    Get PDF
    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT-PSPC pointed observations at high galactic latitude. The survey is being carried out using a Wavelet based Detection Algorithm which is not biased against extended, low surface brightness sources. A new flux--diameter limited sample of 10 cluster candidates has been created from 3deg2\rm\sim 3 \, deg^2 surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low--moderate redshift groups or intermediate to high redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 11014ergcm2s1\rm 1\cdot 10^{-14} erg cm^{-2} s^{-1} (0.5--2.0 keV). This extends the logN\log N--logS\log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.Comment: uuencoded compressed Postscript, 7 pages including 4 figures. Accepted for publication in Ap. J. Letters

    The micro-Jy Radio Source Population: the VLA-CDFS View

    Full text link
    We analyse the 267 radio sources from our deep (flux limit of 42 microJy at the field center at 1.4 GHz) Chandra Deep Field South 1.4 and 5 GHz VLA survey. The radio population is studied by using a wealth of multi-wavelength information, including morphology and spectral types, in the radio, optical, and X-ray bands. The availability of redshifts for ~ 70% of our sources allows us to derive reliable luminosity estimates for the majority of the objects. Contrary to some previous results, we find that star-forming galaxies make up only a minority (~ 1/3) of sub-mJy sources, the bulk of which are faint radio galaxies, mostly of the Fanaroff-Riley I type.Comment: 6 pages, 3 figures, to appear in the proceedings of "At the Edge of the Universe", Sintra, Portugal, Oct. 9 - 13, 200

    Chandra and optical/IR observations of CXOJ1415.2+3610, a massive, newly discovered galaxy cluster at z~1.5

    Full text link
    (Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5) galaxy cluster serendipitously detected in a deep, high-resolution Chandra observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is the highest-z cluster discovered with Chandra so far. Moreover, the total exposure time of 280 ks with ACIS-S provides the deepest X-ray observation currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of the extended emission of the intracluster medium (ICM) with XSPEC, and we detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_\alpha line complex, from which we obtain z_X=1.46\pm0.025. The analysis of the z-3.6\mu m color-magnitude diagram shows a well defined sequence of red galaxies within 1' from the cluster X-ray emission peak with a color range [5 < z-3.6 \mu m < 6]. The photometric redshift obtained by spectral energy distribution (SED) fitting is z_phot=1.47\pm 0.25. After fixing the redshift to z=1.46, we perform the final spectral analysis and measure the average gas temperature with a 20% error, kT=5.8^{+1.2}_{-1.0} keV, and the Fe abundance Z_Fe = 1.3_{-0.5}^{+0.8}Z_\odot. We fit the background subtracted surface brightness with a single beta--model out to 35" and derive the deprojected electron density profile. The ICM mass is 1.09_{-0.2}^{+0.3}\times 10^{13} M_\odot within 300 kpc. The total mass is M_{2500}= 8.6_{-1.7}^{+2.1} \times 10 ^{13} M_\odot for R_{2500}=(220\pm 55) kpc. Extrapolating the profile at larger radii we find M_{500}= 2.1_{-0.5}^{+0.7} \times 10 ^{14} M_\odot for R_{500} = 510_{-50}^{+55}$ kpc. This analysis establishes CXOJ1415.2+3610 as one of the best characterized distant galaxy clusters based on X-ray data alone.Comment: 12 pages, 9 figures, A\&A in press, minor modifications in the tex

    The Swift X-ray Telescope Cluster Survey II. X-ray spectral analysis

    Full text link
    (Abridged) We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS, Tundo et al. 2012). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or photometric redshifts are obtained with a cross-correlation with NED. Additional photometric redshifts are computed with a dedicated follow-up program with the TNG and a cross-correlation with the SDSS. We also detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a mekal model. We perform extensive spectral simulations to derive an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Overall, we are able to characterize the ICM of 46 sources. The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z~0.25 and extends up to z~1, with 60% of the sample at 0.1<z<0.4. We derive the Luminosity-Temperature relation for these 46 sources, finding good agreement with previous studies. The quality of the SWXCS sample is comparable to other samples available in the literature and obtained with much larger X-ray telescopes. Our results have interesting implications for the design of future X-ray survey telescopes, characterised by good-quality PSF over the entire field of view and low background.Comment: 27 pages, 15 figures; minor typos corrected. To be published in A&A, Volume 567, July 2014. Websites of the SWXCS project: http://www.arcetri.astro.it/SWXCS/ and http://swxcs.ustc.edu.cn

    Evolution in the iron abundance of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3z>0.3, which cover a temperature range of 3>kT>153> kT > 15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.150.3)Rvir(0.15-0.3) R_{vir} in clusters below 5 keV is, on average, a factor of 2\sim2 higher than in hotter clusters, following Z(T)0.88T0.47ZZ(T)\simeq 0.88 T^{-0.47} Z_\odot, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.30.3> z > 1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance ZFe0.25ZZ_{Fe}\simeq 0.25 Z_\odot as a function of redshift, but only for clusters at z>0.5z>0.5. The emission-weighted iron abundance is significantly higher (ZFe0.4ZZ_{Fe}\simeq0.4 Z_\odot) in the redshift range z0.30.5z\simeq0.3-0.5, approaching the value measured locally in the inner 0.15Rvir0.15 R_{vir} radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.30.1<z<0.3. The decrease in ZFeZ_{Fe} with zz can be parametrized by a power law of the form (1+z)1.25\sim(1+z)^{-1.25}. The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of 2\sim2 larger than at z1.2z\simeq 1.2. We confirm that the ICM is already significantly enriched (ZFe0.25ZZ_{Fe}\simeq0.25 Z_\odot) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 4 pages, 4 figures, to appear in the Proceedings of "The Extreme Universe in the Suzaku Era", Dicember 2006, Kyoto (Japan
    corecore