9,336 research outputs found
Quasiadiabatic dynamics of ultracold bosonic atoms in a one-dimensional optical superlattice
We study the quasiadiabatic dynamics of a one-dimensional system of ultracold
bosonic atoms loaded in an optical superlattice. Focusing on a slow linear
variation in time of the superlattice potential, the system is driven from a
conventional Mott insulator phase to a superlattice-induced Mott insulator,
crossing in between a gapless critical superfluid region. Due to the presence
of a gapless region, a number of defects depending on the velocity of the
quench appear. Our findings suggest a power-law dependence similar to the
Kibble-Zurek mechanism for intermediate values of the quench rate. For the
temporal ranges of the quench dynamics that we considered, the scaling of
defects depends nontrivially on the width of the superfluid region.Comment: 6 Pages, 4 Figure
Diagnosing order by disorder in quantum spin systems
In this paper we study the frustrated J1-J2 quantum Heisenberg model on the
square lattice for J2 > 2J1, in a magnetic field. In this regime the classical
system is known to have a degenerate manifold of lowest energy configurations,
where standard thermal order by disorder occurs. In order to study its quantum
version we use a path integral formulation in terms of coherent states. We show
that the classical degeneracy in the plane transverse to the magnetic field is
lifted by quantum fluctuations. Collinear states are then selected, in a
similar pattern to that set by thermal order by disorder, leaving a Z2
degeneracy. A careful analysis reveals a purely quantum mechanical effect given
by the tunneling between the two minima selected by fluctuations. The effective
description contains two planar (XY -like) fields conjugate to the total
magnetization and the difference of the two sublattice magnetizations. Disorder
in either or both of these fields produces the locking of their conjugate
observables. Furthermore, within this scenario we argue that the quantum state
is close to a product state.Comment: 8 pages, 3 figure
On the Path Integral Representation for Spin Systems
We propose a classical constrained Hamiltonian theory for the spin. After the
Dirac treatment we show that due to the existence of second class constraints
the Dirac brackets of the proposed theory represent the commutation relations
for the spin. We show that the corresponding partition function, obtained via
the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent
states. We also evaluate this partition function for the case of a single spin
in a magnetic field.Comment: To be published in J.Phys. A: Math. and Gen. Latex file, 12 page
Effective thermal dynamics following a quantum quench in a spin chain
We study the nonequilibrium dynamics of the Quantum Ising Model following an
abrupt quench of the transverse field. We focus on the on-site autocorrelation
function of the order parameter, and extract the phase coherence time
from its asymptotic behavior. We show that the initial state
determines only through an effective temperature set by its
energy and the final Hamiltonian. Moreover, we observe that the dependence of
on the effective temperature fairly agrees with that obtained
in thermal equilibrium as a function of the equilibrium temperature.Comment: 4 pages, 4 figures. Published versio
Quantum Breathing of an Impurity in a One-dimensional Bath of Interacting Bosons
By means of time-dependent density-matrix renormalization-group (TDMRG) we
are able to follow the real-time dynamics of a single impurity embedded in a
one-dimensional bath of interacting bosons. We focus on the impurity breathing
mode, which is found to be well-described by a single oscillation frequency and
a damping rate. If the impurity is very weakly coupled to the bath, a
Luttinger-liquid description is valid and the impurity suffers an
Abraham-Lorentz radiation-reaction friction. For a large portion of the
explored parameter space, the TDMRG results fall well beyond the
Luttinger-liquid paradigm.Comment: 10 pages, 7 figures, main text and supplementary material merged in a
single PRB style documen
Decoherence induced by interacting quantum spin baths
We study decoherence induced on a two-level system coupled to a
one-dimensional quantum spin chain. We consider the cases where the dynamics of
the chain is determined by the Ising, XY, or Heisenberg exchange Hamiltonian.
This model of quantum baths can be of fundamental importance for the
understanding of decoherence in open quantum systems, since it can be
experimentally engineered by using atoms in optical lattices. As an example,
here we show how to implement a pure dephasing model for a qubit system coupled
to an interacting spin bath. We provide results that go beyond the case of a
central spin coupled uniformly to all the spins of the bath, in particular
showing what happens when the bath enters different phases, or becomes
critical; we also study the dependence of the coherence loss on the number of
bath spins to which the system is coupled and we describe a
coupling-independent regime in which decoherence exhibits universal features,
irrespective of the system-environment coupling strength. Finally, we establish
a relation between decoherence and entanglement inside the bath. For the Ising
and the XY models we are able to give an exact expression for the decay of
coherences, while for the Heisenberg bath we resort to the numerical
time-dependent Density Matrix Renormalization Group.Comment: 18 pages, 20 figure
Quantum Critical Dynamics of A Qubit Coupled to An Isotropic Lipkin-Meshkov-Glick Bath
We explore a dynamic signature of quantum phase transition (QPT) in an
isotropic Lipkin-Meshkov-Glick (LMG) model by studying the time evolution of a
central qubit coupled to it. We evaluate exactly the time-dependent purity,
which can be used to measure quantum coherence, of the central qubit. It is
found that distinctly different behaviors of the purity as a function of the
parameter reveal clearly the QPT point in the system. It is also clarified that
the present model is equivalent to an anti Jaynes-Cummings model under certain
conditions.Comment: 8 pages, 4 figure
- …
