479 research outputs found
Concurrent Kleene Algebra: Free Model and Completeness
Concurrent Kleene Algebra (CKA) was introduced by Hoare, Moeller, Struth and
Wehrman in 2009 as a framework to reason about concurrent programs. We prove
that the axioms for CKA with bounded parallelism are complete for the semantics
proposed in the original paper; consequently, these semantics are the free
model for this fragment. This result settles a conjecture of Hoare and
collaborators. Moreover, the techniques developed along the way are reusable;
in particular, they allow us to establish pomset automata as an operational
model for CKA.Comment: Version 2 includes an overview section that outlines the completeness
proof, as well as some extra discussion of the interpolation lemma. It also
includes better typography and a number of minor fixes. Version 3
incorporates the changes by comments from the anonymous referees at ESOP.
Among other things, these include a worked example of computing the syntactic
closure by han
CXCR2 deficient mice display macrophage-dependent exaggerated acute inflammatory responses
CXCR2 is an essential regulator of neutrophil recruitment to inflamed and damaged sites and plays prominent roles in inflammatory pathologies and cancer. It has therefore been highlighted as an important therapeutic target. However the success of the therapeutic targeting of CXCR2 is threatened by our relative lack of knowledge of its precise in vivo mode of action. Here we demonstrate that CXCR2-deficient mice display a counterintuitive transient exaggerated inflammatory response to cutaneous and peritoneal inflammatory stimuli. In both situations, this is associated with reduced expression of cytokines associated with the resolution of the inflammatory response and an increase in macrophage accumulation at inflamed sites. Analysis using neutrophil depletion strategies indicates that this is a consequence of impaired recruitment of a non-neutrophilic CXCR2 positive leukocyte population. We suggest that these cells may be myeloid derived suppressor cells. Our data therefore reveal novel and previously unanticipated roles for CXCR2 in the orchestration of the inflammatory response
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Kleene algebra with observations
Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of sequential programs. Generalising KAT to reason about concurrent programs is not straightforward, because axioms native to KAT in conjunction with expected axioms for concurrency lead to an anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise the free model of KAO, and establish a decision procedure w.r.t. its equational theory
Partially Observable Concurrent Kleene Algebra
We introduce partially observable concurrent Kleene algebra (POCKA), an algebraic framework to reason about concurrent programs with variables as well as control structures, such as conditionals and loops, that depend on those variables. We illustrate the use of POCKA through concrete examples. We prove that POCKA is a sound and complete axiomatisation of a model of partial observations, and show the semantics passes an important check for sequential consistency
RNAmotifs : Prediction of multivalent RNA motifs that control alternative splicing
RNA-binding proteins (RBPs) regulate splicing according to position-dependent principles, which can be exploited for analysis of regulatory motifs. Here we present RNAmotifs, a method that evaluates the sequence around differentially regulated alternative exons to identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs. We show that diverse RBPs share basic positional principles, but differ in their propensity to enhance or repress exon inclusion. We assess exons differentially spliced between brain and heart, identifying known and new regulatory motifs, and predict the expression pattern of RBPs that bind these motifs
Partially Observable Concurrent Kleene Algebra
We introduce partially observable concurrent Kleene algebra (POCKA), an algebraic framework to reason about concurrent programs with variables as well as control structures, such as conditionals and loops, that depend on those variables. We illustrate the use of POCKA through concrete examples. We prove that POCKA is a sound and complete axiomatisation of a model of partial observations, and show the semantics passes an important check for sequential consistency
Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver
Leukocyte adhesion and transmigration are central features governing immune
surveillance and inflammatory reactions in body tissues. Within the liver
sinusoids, chemokines initiate the first crucial step of T-cell migration into
the hepatic tissue. We studied molecular mechanisms involved in endothelial
chemokine supply during hepatic immune surveillance and liver inflammation and
their impact on the recruitment of CD4+ T cells into the liver. In the murine
model of Concanavalin A-induced T cell-mediated hepatitis, we showed that
hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and
CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased.
Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3
accumulated within the inflamed liver tissue. In histology, CXCL9 was
associated with liver sinusoidal endothelial cells (LSEC) which represent the
first contact site for T-cell immigration into the liver. LSEC actively
transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-
coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+
total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in
vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of
endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In
contrast, CXCR3 was not involved in the endothelial transport of its ligands
CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked
endothelial chemokine internalization and CD4+ T-cell transmigration in vitro
as well as migration of CD4+ T cells into the inflamed liver in vivo.
Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated
hepatitis was strongly reduced after administration of chlorpromazine. These
data demonstrate that LSEC actively provide perivascularly expressed
homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent
intracellular transport mechanisms thereby contributing to the hepatic
recruitment of CD4+ T-cell populations during immune surveillance and liver
inflammation
Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells
Background: The Duffy antigen receptor for chemokines (DARC) shows high affinity binding to multiple inflammatory CC and CXC chemokines and is expressed by erythrocytes and endothelial cells. Recent evidence suggests that endothelial DARC facilitates chemokine transcytosis to promote neutrophil recruitment. However, the mechanism of chemokine endocytosis by DARC remains unclear. Methodology/Principal Findings: We investigated the role of several endocytic pathways in DARC-mediated ligand internalization. Here we report that, although DARC co-localizes with caveolin-1 in endothelial cells, caveolin-1 is dispensable for DARC-mediated 125I-CXCL1 endocytosis as knockdown of caveolin-1 failed to inhibit ligand internalization. 125I-CXCL1 endocytosis by DARC was also independent of clathrin and flotillin-1 but required cholesterol and was, in part, inhibited by silencing Dynamin II expression. 125I-CXCL1 endocytosis was inhibited by amiloride, cytochalasin D, and the PKC inhibitor Gö6976 whereas Platelet Derived Growth Factor (PDGF) enhanced ligand internalization through DARC. The majority of DARC-ligand interactions occurred on the endothelial surface, with DARC identified along plasma membrane extensions with the appearance of ruffles, supporting the concept that DARC provides a high affinity scaffolding function for surface retention of chemokines on endothelial cells. Conclusions/Significance: These results show DARC-mediated chemokine endocytosis occurs through a macropinocytosis-like process in endothelial cells and caveolin-1 is dispensable for CXCL1 internalization. © 2011 Zhao et al
Translating Glutamate: From Pathophysiology to Treatment
The neurotransmitter glutamate is the primary excitatory neurotransmitter in mammalian brain and is responsible for most corticocortical and corticofugal neurotransmission. Disturbances in glutamatergic function have been implicated in the pathophysiology of several neuropsychiatric disorders—including schizophrenia, drug abuse and addiction, autism, and depression—that were until recently poorly understood. Nevertheless, improvements in basic information regarding these disorders have yet to translate into Food and Drug Administration–approved treatments. Barriers to translation include the need not only for improved compounds but also for improved biomarkers sensitive to both structural and functional target engagement and for improved translational models. Overcoming these barriers will require unique collaborative arrangements between pharma, government, and academia. Here, we review a recent Institute of Medicine–sponsored meeting, highlighting advances in glutamatergic theories of neuropsychiatric illness as well as remaining barriers to treatment development.National Institute of Mental Health (U.S.) (grant R37MH49334)National Institute of Mental Health (U.S.) (Intramural Research Program)National Institute of Mental Health (U.S.) (R01DA03383)National Institute of Mental Health (U.S.) (P50MH086385)National Institutes of Health (U.S.)FRAXA Research FoundationHoward Hughes Medical InstituteSimons Foundatio
- …
