16,969 research outputs found

    Modified newtonian dynamics and non-relativistic ChSAS gravity

    Full text link
    In the context of the non-relativistic theories, a generalization of the Chern--Weil-theorem allows us to show that extended Chern--Simons actions for gravity in d=4 invariant under some specific non-relativistic groups lead to modified Poisson equations. In some particular cases, these modified equations have the form of the so-called MOND approach to gravity. The modifications could be understood as due to the effects of dark matter. This result could leads us to think that dark matter can be interpreted as a non-relativistic limit of dark energy

    On Nilcompactifications of Prime Spectra of Commutative Rings

    Full text link
    Given a ring R and S one of its ideals, we obtain a compactification of the prime spectrum of S through a mainly algebraic process. We name it the R-nilcompactification of SpecS. We study some categorical properties of this construction.Comment: 12 pages, 8 Tikz figure

    Background modeling by shifted tilings of stacked denoising autoencoders

    Get PDF
    The effective processing of visual data without interruption is currently of supreme importance. For that purpose, the analysis system must adapt to events that may affect the data quality and maintain its performance level over time. A methodology for background modeling and foreground detection, whose main characteristic is its robustness against stationary noise, is presented in the paper. The system is based on a stacked denoising autoencoder which extracts a set of significant features for each patch of several shifted tilings of the video frame. A probabilistic model for each patch is learned. The distinct patches which include a particular pixel are considered for that pixel classification. The experiments show that classical methods existing in the literature experience drastic performance drops when noise is present in the video sequences, whereas the proposed one seems to be slightly affected. This fact corroborates the idea of robustness of our proposal, in addition to its usefulness for the processing and analysis of continuous data during uninterrupted periods of time.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Joint optimization of power and data transfer in multiuser MIMO systems

    Get PDF
    We present an approach to solve the nonconvex optimization problem that arises when designing the transmit covariance matrices in multiuser multiple-input multiple-output (MIMO) broadcast networks implementing simultaneous wireless information and power transfer (SWIPT). The MIMO SWIPT problem is formulated as a general multiobjective optimization problem, in which data rates and harvested powers are optimized simultaneously. Two different approaches are applied to reformulate the (nonconvex) multiobjective problem. In the first approach, the transmitter can control the specific amount of power to be harvested by power transfer whereas in the second approach the transmitter can only control the proportion of power to be harvested among the different harvesting users. We solve the resulting formulations using the majorization-minimization (MM) approach. The solution obtained from the MM approach is compared to the classical block-diagonalization (BD) strategy, typically used to solve the nonconvex multiuser MIMO network by forcing no interference among users. Simulation results show that the proposed approach improves over the BD approach both the system sum rate and the power harvested by users. Additionally, the computational times needed for convergence of the proposed methods are much lower than the ones required for classical gradient-based approaches.Peer ReviewedPostprint (author's final draft
    corecore