505 research outputs found
Perturbed Defects and T-Systems in Conformal Field Theory
Defect lines in conformal field theory can be perturbed by chiral defect
fields. If the unperturbed defects satisfy su(2)-type fusion rules, the
operators associated to the perturbed defects are shown to obey functional
relations known from the study of integrable models as T-systems. The procedure
is illustrated for Virasoro minimal models and for Liouville theory.Comment: 24 pages, 13 figures; v2: typos corrected, in particular in (2.10)
and app. A.2, version to appear in J.Phys.
Topological defects for the free boson CFT
Two different conformal field theories can be joined together along a defect
line. We study such defects for the case where the conformal field theories on
either side are single free bosons compactified on a circle. We concentrate on
topological defects for which the left- and right-moving Virasoro algebras are
separately preserved, but not necessarily any additional symmetries. For the
case where both radii are rational multiples of the self-dual radius we
classify these topological defects. We also show that the isomorphism between
two T-dual free boson conformal field theories can be described by the action
of a topological defect, and hence that T-duality can be understood as a
special type of order-disorder duality.Comment: 43 pages, 4 figure
From boundary to bulk in logarithmic CFT
The analogue of the charge-conjugation modular invariant for rational
logarithmic conformal field theories is constructed. This is done by
reconstructing the bulk spectrum from a simple boundary condition (the analogue
of the Cardy `identity brane'). We apply the general method to the c_1,p
triplet models and reproduce the previously known bulk theory for p=2 at c=-2.
For general p we verify that the resulting partition functions are modular
invariant. We also construct the complete set of 2p boundary states, and
confirm that the identity brane from which we started indeed exists. As a
by-product we obtain a logarithmic version of the Verlinde formula for the
c_1,p triplet models.Comment: 35 pages, 2 figures; v2: minor corrections, version to appear in
J.Phys.
Rigidity and defect actions in Landau-Ginzburg models
Studying two-dimensional field theories in the presence of defect lines
naturally gives rise to monoidal categories: their objects are the different
(topological) defect conditions, their morphisms are junction fields, and their
tensor product describes the fusion of defects. These categories should be
equipped with a duality operation corresponding to reversing the orientation of
the defect line, providing a rigid and pivotal structure. We make this
structure explicit in topological Landau-Ginzburg models with potential x^d,
where defects are described by matrix factorisations of x^d-y^d. The duality
allows to compute an action of defects on bulk fields, which we compare to the
corresponding N=2 conformal field theories. We find that the two actions differ
by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected
proof of theorem 2.13, added remark 3.9; version to appear in CM
On the crossing relation in the presence of defects
The OPE of local operators in the presence of defect lines is considered both
in the rational CFT and the Virasoro (Liouville) theory. The duality
transformation of the 4-point function with inserted defect operators is
explicitly computed. The two channels of the correlator reproduce the
expectation values of the Wilson and 't Hooft operators, recently discussed in
Liouville theory in relation to the AGT conjecture.Comment: TEX file with harvmac; v3: JHEP versio
Height variables in the Abelian sandpile model: scaling fields and correlations
We compute the lattice 1-site probabilities, on the upper half-plane, of the
four height variables in the two-dimensional Abelian sandpile model. We find
their exact scaling form when the insertion point is far from the boundary, and
when the boundary is either open or closed. Comparing with the predictions of a
logarithmic conformal theory with central charge c=-2, we find a full
compatibility with the following field assignments: the heights 2, 3 and 4
behave like (an unusual realization of) the logarithmic partner of a primary
field with scaling dimension 2, the primary field itself being associated with
the height 1 variable. Finite size corrections are also computed and
successfully compared with numerical simulations. Relying on these field
assignments, we formulate a conjecture for the scaling form of the lattice
2-point correlations of the height variables on the plane, which remain as yet
unknown. The way conformal invariance is realized in this system points to a
local field theory with c=-2 which is different from the triplet theory.Comment: 68 pages, 17 figures; v2: published version (minor corrections, one
comment added
Conformal Field Theories, Graphs and Quantum Algebras
This article reviews some recent progress in our understanding of the
structure of Rational Conformal Field Theories, based on ideas that originate
for a large part in the work of A. Ocneanu. The consistency conditions that
generalize modular invariance for a given RCFT in the presence of various types
of boundary conditions --open, twisted-- are encoded in a system of integer
multiplicities that form matrix representations of fusion-like algebras. These
multiplicities are also the combinatorial data that enable one to construct an
abstract ``quantum'' algebra, whose - and -symbols contain essential
information on the Operator Product Algebra of the RCFT and are part of a cell
system, subject to pentagonal identities. It looks quite plausible that the
classification of a wide class of RCFT amounts to a classification of ``Weak
- Hopf algebras''.Comment: 23 pages, 12 figures, LateX. To appear in MATHPHYS ODYSSEY 2001
--Integrable Models and Beyond, ed. M. Kashiwara and T. Miwa, Progress in
Math., Birkhauser. References and comments adde
Influence of damping on the excitation of the double giant resonance
We study the effect of the spreading widths on the excitation probabilities
of the double giant dipole resonance. We solve the coupled-channels equations
for the excitation of the giant dipole resonance and the double giant dipole
resonance. Taking Pb+Pb collisions as example, we study the resulting effect on
the excitation amplitudes, and cross sections as a function of the width of the
states and of the bombarding energy.Comment: 8 pages, 3 figures, corrected typo
Twisted boundary states in c=1 coset conformal field theories
We study the mutual consistency of twisted boundary conditions in the coset
conformal field theory G/H. We calculate the overlap of the twisted boundary
states of G/H with the untwisted ones, and show that the twisted boundary
states are consistently defined in the diagonal modular invariant. The overlap
of the twisted boundary states is expressed by the branching functions of a
twisted affine Lie algebra. As a check of our argument, we study the diagonal
coset theory so(2n)_1 \oplus so(2n)_1/so(2n)_2, which is equivalent with the
orbifold S^1/\Z_2. We construct the boundary states twisted by the
automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual
consistency by identifying their counterpart in the orbifold. For the triality
of so(8), the twisted states of the coset theory correspond to neither the
Neumann nor the Dirichlet boundary states of the orbifold and yield the
conformal boundary states that preserve only the Virasoro algebra.Comment: 44 pages, 1 figure; (v2) minor change in section 2.3, references
adde
Energy Quantisation in Bulk Bouncing Tachyon
We argue that the closed string energy in the bulk bouncing tachyon
background is to be quantised in a simple manner as if strings were trapped in
a finite time interval. We discuss it from three different viewpoints; (1) the
timelike continuation of the sinh-Gordon model, (2) the dual matrix model
description of the (1+1)-dimensional string theory with the bulk bouncing
tachyon condensate, (3) the c_L=1 limit of the timelike Liouville theory with
the dual Liouville potential turned on. There appears to be a parallel between
the bulk bouncing tachyon and the full S-brane of D-brane decay. We find the
critical value \lambda_c of the bulk bouncing tachyon coupling which is
analogous to \lambda_o=1/2 of the full S-brane coupling, at which the system is
thought to be at the bottom of the tachyon potential.Comment: 25 pages, minor changes, one reference adde
- …
