1,353 research outputs found
Joint constraints on galaxy bias and through the N-pdf of the galaxy number density
We present a full description of the N-probability density function of the
galaxy number density fluctuations. This N-pdf is given in terms, on the one
hand, of the cold dark matter correlations and, on the other hand, of the
galaxy bias parameter. The method relies on the assumption commonly adopted
that the dark matter density fluctuations follow a local non-linear
transformation of the initial energy density perturbations. The N-pdf of the
galaxy number density fluctuations allows for an optimal estimation of the bias
parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if
there exists any a priori information on the bias parameter), and of those
parameters defining the dark matter correlations, in particular its amplitude
(). It also provides the proper framework to perform model selection
between two competitive hypotheses. The parameters estimation capabilities of
the N-pdf are proved by SDSS-like simulations (both ideal log-normal
simulations and mocks obtained from Las Damas simulations), showing that our
estimator is unbiased. We apply our formalism to the 7th release of the SDSS
main sample (for a volume-limited subset with absolute magnitudes ). We obtain and , for galaxy number density fluctuations in cells of a size of
Mpc. Different model selection criteria show that galaxy biasing is
clearly favoured.Comment: 25 pages, 9 figures, 2 tables. v2: Substantial revision, adding the
joint constraints with \sigma_8 and testing with Las Damas mocks. Matches
version accepted for publication in JCA
Shell-like structures in our cosmic neighbourhood
Signatures of the processes in the early Universe are imprinted in the cosmic
web. Some of them may define shell-like structures characterised by typical
scales. We search for shell-like structures in the distribution of nearby rich
clusters of galaxies drawn from the SDSS DR8. We calculate the distance
distributions between rich clusters of galaxies, and groups and clusters of
various richness, look for the maxima in the distance distributions, and select
candidates of shell-like structures. We analyse the space distribution of
groups and clusters forming shell walls. We find six possible candidates of
shell-like structures, in which galaxy clusters have maxima in the distance
distribution to other galaxy groups and clusters at the distance of about 120
Mpc/h. The rich galaxy cluster A1795, the central cluster of the Bootes
supercluster, has the highest maximum in the distance distribution of other
groups and clusters around them at the distance of about 120 Mpc/h among our
rich cluster sample, and another maximum at the distance of about 240 Mpc/h.
The structures of galaxy systems causing the maxima at 120 Mpc/h form an almost
complete shell of galaxy groups, clusters and superclusters. The richest
systems in the nearby universe, the Sloan Great Wall, the Corona Borealis
supercluster and the Ursa Major supercluster are among them. The probability
that we obtain maxima like this from random distributions is lower than 0.001.
Our results confirm that shell-like structures can be found in the distribution
of nearby galaxies and their systems. The radii of the possible shells are
larger than expected for a BAO shell (approximately 109 Mpc/h versus
approximately 120 Mpc/h), and they are determined by very rich galaxy clusters
and superclusters with high density contrast while BAO shells are barely seen
in the galaxy distribution. We discuss possible consequences of these
differences.Comment: Comments: 9 pages, 10 figures, Astronomy and Astrophysics, in pres
FK Comae Berenices, King of Spin: The COCOA-PUFS Project
COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast
spinning, heavily spotted, yellow giant FK Com (HD117555; G4 III). This single
star is thought to be a recent binary merger, and is exceptionally active by
measure of its intense ultraviolet and X-ray emissions, and proclivity to
flare. COCOA-PUFS was carried out with Hubble Space Telescope in the UV
(120-300 nm), using mainly its high-performance Cosmic Origins Spectrograph,
but also high-precision Space Telescope Imaging Spectrograph; Chandra X-ray
Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy
Transmission Grating Spectrometer; together with supporting photometry and
spectropolarimetry in the visible from the ground. This is an introductory
report on the project.
FK Com displayed variability on a wide range of time scales, over all
wavelengths, during the week-long main campaign, including a large X-ray flare;
"super-rotational broadening" of the far-ultraviolet "hot-lines" (e.g., Si IV
139 nm (T~80,000 K) together with chromospheric Mg II 280 nm and C II 133 nm
(10,000-30,000 K); large Doppler swings suggestive of bright regions
alternately on advancing and retreating limbs of the star; and substantial
redshifts of the epoch-average emission profiles. These behaviors paint a
picture of a highly extended, dynamic, hot (10 MK) coronal magnetosphere around
the star, threaded by cooler structures perhaps analogous to solar prominences,
and replenished continually by surface activity and flares. Suppression of
angular momentum loss by the confining magnetosphere could temporarily postpone
the inevitable stellar spindown, thereby lengthening this highly volatile stage
of coronal evolution.Comment: to be published in ApJ
Fluctuation relations and coarse-graining
We consider the application of fluctuation relations to the dynamics of
coarse-grained systems, as might arise in a hypothetical experiment in which a
system is monitored with a low-resolution measuring apparatus. We analyze a
stochastic, Markovian jump process with a specific structure that lends itself
naturally to coarse-graining. A perturbative analysis yields a reduced
stochastic jump process that approximates the coarse-grained dynamics of the
original system. This leads to a non-trivial fluctuation relation that is
approximately satisfied by the coarse-grained dynamics. We illustrate our
results by computing the large deviations of a particular stochastic jump
process. Our results highlight the possibility that observed deviations from
fluctuation relations might be due to the presence of unobserved degrees of
freedom.Comment: 19 pages, 6 figures, very minor change
Estimating Flow Rates through Fracture Networks using Combinatorial Optimization
To enable fast uncertainty quantification of fluid flow in a discrete
fracture network (DFN), we present two approaches to quickly compute fluid flow
in DFNs using combinatorial optimization algorithms. Specifically, the
presented Hanan Shortest Path Maxflow (HSPM) and Intersection Shortest Path
Maxflow (ISPM) methods translate DFN geometries and properties to a graph on
which a max flow algorithm computes a combinatorial flow, from which an overall
fluid flow rate is estimated using a shortest path decomposition of this flow.
The two approaches are assessed by comparing their predictions with results
from explicit numerical simulations of simple test cases as well as stochastic
DFN realizations covering a range of fracture densities. Both methods have a
high accuracy and very low computational cost, which can facilitate much-needed
in-depth analyses of the propagation of uncertainty in fracture and
fracture-network properties to fluid flow rates
Confirmation of the Planet Hypothesis for the Long-period Radial Velocity Variations of Beta Geminorum
We present precise stellar radial velocity measurements for the K giant star
Beta Gem spanning over 25 years. These data show that the long period low
amplitude radial velocity variations found by Hatzes & Cochran (1993) are
long-lived and coherent. An examination of the Ca II K emission, spectral line
shapes from high resolution data (R = 210,000), and Hipparcos photometry show
no significant variations of these quantities with the RV period. These data
confirm the planetary companion hypothesis suggested by Hatzes & Cochran
(1993). An orbital solution assuming a stellar mass of 1.7 M_sun yields a
period, P = 589.6 days, a minimum mass of 2.3 M_Jupiter, and a semi-major axis,
and a = 1.6 AU. The orbit is nearly circular (e = 0.02). Beta Gem is the
seventh intermediate mass star shown to host a sub-stellar companion and
suggests that planet-formation around stars much more massive than the sun may
common.Comment: 10 pages, 9 figures, Astronomy and Astrophysics, in pres
The supercluster--void network III. The correlation function as a geometrical statistic
We investigate properties of the correlation function of clusters of galaxies
using geometrical models. On small scales the correlation function depends on
the shape and the size of superclusters. On large scales it describes the
geometry of the distribution of superclusters. If superclusters are distributed
randomly then the correlation function on large scales is featureless. If
superclusters and voids have a tendency to form a regular lattice then the
correlation function on large scales has quasi-regularly spaced maxima and
minima of decaying amplitude; i.e., it is oscillating. The period of
oscillations is equal to the step size of the grid of the lattice.
We calculate the power spectrum for our models and compare the geometrical
information of the correlation function with other statistics. We find that
geometric properties (the regularity of the distribution of clusters on large
scales) are better quantified by the correlation function. We also analyse
errors in the correlation function and the power spectrum by generating random
realizations of models and finding the scatter of these realizations.Comment: MNRAS LaTex style, 12 pages, 7 PostScript figures embedded, accepted
by MNRA
- …
