258 research outputs found

    CMA Channel Equalization Through An Adaptive MMSE Equalizer Based RLS Algorithm

    Get PDF
    The adaptive algorithm has been widely used in the digital signal processing like channel estimation, channel equalization, echo cancellation, and so on. One of the most important adaptive algorithms is the RLS algorithm. We present in this paper n multiple objective optimization approach to fast blind channel equalization. By investigating first the performance (mean-square error) of the standard fractionally spaced CMA (constant modulus algorithm) equalizer in the presence of noise, we show that CMA local minima exist near the minimum mean-square error (MMSE) equalizers. Consequently, CMA may converge to a local minimum corresponding to a poorly designed MMSE receiver with considerable large mean-square error. The step size in the RLS algorithm decides both the convergence speed and the residual error level, the highest speed of convergence and residual error level

    CURRENT-FED SWITCHED INVERTER WITH COUPLED INDUCTOR FOR LOW VOLTAGE RENEWABLE SYSTEM

    Get PDF
    This paper presents a novel coupled inductor based high boost inverter topology which can be utilized in low voltage renewable systems where high voltage step-up is needed to interface with 110 Vt220 V AC systems. The proposed inverter possesses high boost ability with superior EMI immunity compared to a traditional voltage source inverter (VSI). Unlike the traditional VSI, the proposed inverter does not need dead time circuit for its switching signals as it utilizes shoot-through state of the inverter in its single-stage configuration. Insertion of shoot-through state also helps it to achieve high boost operation essential for renewable energy applications. The proposed inverter is derived from Current-Fed Switched Inverter topology. Apart from topology derivation, this paper describes the steady state analysis of the inverter and establishes the relation between input, DC-link, and AC output. An experimental prototype is built to validate the proposed inverter circuit. A 220 V (rms) AC is obtained from 52 V DC input to demonstrate its boost mode of operation

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Implementation of Leaky Bucket with deep learning Algorithm to Avoid Congestion in DEC Protocol in medical applications

    Get PDF
    A wireless sensor network is a critical component in many disciplines. There are a large number of sensor nodes in it. These sensor nodes perform various tasks, including identifying, dispensing, communicating, and providing power. Data is sent from source to destination and plays an important role. Congestion will occur during data transfer =0>0from one node to another and in the cluster head. Congestion will emerge as a result of either traffic division or resource allocation. Energy will be wasted due to traffic division congestion, which results in packet loss and retransmission of deleted packets. As a result, it must condense. Congestion management will be handled by a few wireless sensor networks using various protocols. Deterministic Energy Efficient Clustering (DEC) protocol is considered to reduce energy consumption based on residual energy in which the leaky bucket algorithm is cast-off. In the event of congestion, our plan outlines a strategy for dealing with and resolving it using this manner. According to simulation testing, the suggested approach may significantly improve longevity, energy, throughput, and packet loss

    A test architecture design for SoCs using ATAM method

    Get PDF
    Test arranging is a basic issue in structure on-a-chip (S.O.C) experiment mechanization. Capable investigation designs constrain the general organization check request time, keep away from analysis reserve conflicts, in addition to purpose of restriction control disseminating in the midst of examination manner. In this broadsheet, we absent a fused method to manage a couple of test arranging issues. We first present a system to choose perfect timetables for sensibly evaluated SOC’s among need associations, i.e., plans that spare alluring orderings among tests. This furthermore acquaints a capable heuristic estimation with plan examinations designed for enormous S.O.Cs through need necessities in polynomial occasion. We portray a narrative figuring with the purpose of uses pre-emption of tests to secure capable date-books in favour of SOCs. Exploratory marks on behalf of an educational S-O-C plus a cutting edge SOC exhibit with the aim of capable investigation timetables be able to subsist gained in sensible CPU occasion

    Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil

    Get PDF
    Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes

    Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs

    Get PDF
    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P \u3c 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P \u3c 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P \u3c 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate

    Expression of Bcl-2 and Bax in Mouse Renal Tubules during Kidney Development

    Get PDF
    Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated
    corecore