2,189 research outputs found
Enhanced thermoelectric figure of merit in vertical graphene junctions
In this work, we investigate thermoelectric properties of junctions
consisting of two partially overlapped graphene sheets coupled to each other in
the cross-plane direction. It is shown that because of the weak van-der Waals
interactions between graphene layers, the phonon conductance in these junctions
is strongly reduced, compared to that of single graphene layer structures,
while their electrical performance is weakly affected. By exploiting this
effect, we demonstrate that the thermoelectric figure of merit can reach values
higher than 1 at room temperature in junctions made of gapped graphene
materials, for instance, graphene nanoribbons and graphene nanomeshes. The
dependence of thermoelectric properties on the junction length is also
discussed. This theoretical study hence suggests an efficient way to enhance
thermoelectric efficiency of graphene devices.Comment: 6 pages, 4 figures, submitte
Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field
In the present work, we used molecular dynamic simulations of the equilibrium NPT ensemble to examine the effect of an external electric field on the three-phase coexistence temperature of methane gas, liquid water and methane hydrate. For these simulations, we used the TIP4P/Ice rigid water model and a single-site model for methane. The simulations were implemented at two pressures, 400 and 250bar, over temperatures ranging from 285 to 320K and from 280 to 315K, respectively. The application of an external electric field in the range of 0.1-0.9caused the effect of the thermal vibrations of the water molecules to become attenuated. This resulted in a shift of the three-phase coexistence temperature to higher temperatures. Electric fields below this range did not cause a difference in the coexistence temperature, and electric fields above this range enhanced the thermal effect. The shift had a magnitude of 22.5K on average.Peer ReviewedPostprint (author's final draft
Ballistic heat transport of quantum spin excitations as seen in SrCuO2
Fundamental conservation laws predict ballistic, i.e., dissipationless
transport behaviour in one-dimensional quantum magnets. Experimental evidence,
however, for such anomalous transport has been lacking ever since. Here we
provide experimental evidence for ballistic heat transport in a S=1/2
Heisenberg chain. In particular, we investigate high purity samples of the
chain cuprate SrCuO2 and observe a huge magnetic heat conductivity
. An extremely large spinon mean free path of more than a
micrometer demonstrates that is only limited by extrinsic
scattering processes which is a clear signature of ballistic transport in the
underlying spin model
Amorphous ferromagnetism and re-entrant magnetic glassiness in SmMoO: new insights into the electronic phase diagram of pyrochlore molybdates
We discuss the magnetic properties of a SmMoO single
crystal as investigated by means of different experimental techniques. In the
literature, a conventional itinerant ferromagnetic state is reported for the
Mo sublattice below K. However, our results of dc
magnetometry, muon spin spectroscopy (SR) and high-harmonics magnetic
ac susceptibility unambiguously evidence highly disordered conditions in this
phase, in spite of the crystalline and chemical order. This disordered magnetic
state shares several common features with amorphous ferromagnetic alloys. This
scenario for SmMoO is supported by the anomalously high
values of the critical exponents, as mainly deduced by a scaling analysis of
our dc magnetization data and confirmed by the other techniques. Moreover,
SR detects a significant static magnetic disorder at the microscopic
scale. At the same time, the critical divergence of the third-harmonic
component of the ac magnetic susceptibility around K leads to
additional evidence towards the glassy nature of this magnetic phase. Finally,
the longitudinal relaxation of spin polarization (also supported by
results of ac susceptibility) evidences re-entrant glassy features similar to
amorphous ferromagnets.Comment: 15 pages, 13 figure
The thermal conductivity of alternating spin chains
We study a class of integrable alternating (S1,S2) quantum spin chains with
critical ground state properties. Our main result is the description of the
thermal Drude weight of the one-dimensional alternating spin chain as a
function of temperature. We have identified the thermal current of the model
with alternating spins as one of the conserved currents underlying the
integrability. This allows for the derivation of a finite set of non-linear
integral equations for the thermal conductivity. Numerical solutions to the
integral equations are presented for specific cases of the spins S1 and S2. In
the low-temperature limit a universal picture evolves where the thermal Drude
weight is proportional to temperature T and central charge c.Comment: 15 pages, 1 figur
The potential role of T-cells and their interaction with antigen-presenting cells in mediating immunosuppression following trauma-hemorrhage
Objective: Trauma-hemorrhage results in depressed immune responses of antigen-presenting cells (APCs) and T-cells. Recent studies suggest a key role of depressed T-cell derived interferon (IFN)-g in this complex immune cell interaction. The aim of this study was to elucidate further the underlying mechanisms responsible for dysfunctional T-cells and their interaction with APCs following trauma-hemorrhage.
Design: Adult C3H/HeN male mice were subjected to trauma-hemorrhage (3-cm midline laparotomy) followed by hemorrhage (blood pressure of 35�5mmHg for 90 min and resuscitation) or sham operation. At 24 h thereafter, spleens were harvested and T-cells (by Microbeads) and APCs (via adherence) were Isolated. Co-cultures of T-cells and APCs were established for 48 h and stimulated with concanavalin A and lipopolysaccharide. T-Cell specific cytokines known to affect APC function (i.e. interleukin(IL)-2, IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF)) were measured in culture supernatants by Multiplex assay. The expression of MHC class II as well as co-stimulatory surface molecules on T-cells and APCs was determined by flow cytometry.
Results: The release of IL-4 and GM-CSF by T-cells was suppressed following trauma-hemorrhage, irrespective of whether sham or trauma-hemorrhage APCs were present. Antigen-presenting cells from animals subjected to trauma-hemorrhage did not affect T-cell derived cytokine release by sham T-cells. In contrast, T-cells from traumahemorrhage animals depressed MHC class II expression of CD11c(þ) cells, irrespective of whether APCs underwent sham or trauma-hemorrhage procedure. Surprisingly, co-stimulatory molecules on APCs (CD80, CD86) were not affected by trauma-hemorrhage.
Conclusions: These results suggest that beside IFN-g other T-cell derived cytokines contribute to immunosuppression following trauma-hemorrhage causing diminished MHC II expression on APCs. Thus, T-cells appear to play an important role in this interaction at the time-point examined. Therapeutic approaches should aim at maintenance of T-cell function and their interaction with APCs to prevent extended immunosuppression following trauma-hemorrhage
Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas.
We study the critical point for the emergence of coherence in a harmonically trapped two-dimensional Bose gas with tunable interactions. Over a wide range of interaction strengths we find excellent agreement with the classical-field predictions for the critical point of the Berezinskii-Kosterlitz-Thouless (BKT) superfluid transition. This allows us to quantitatively show, without any free parameters, that the interaction-driven BKT transition smoothly converges onto the purely quantum-statistical Bose-Einstein condensation transition in the limit of vanishing interactions.This work was supported by AFOSR, ARO, DARPA OLE, and EPSRC [Grant No. EP/K003615/1]. N. N. acknowledges support from Trinity College, Cambridge, R. P. S. from the Royal Society, and K. G. H. V. from DAAD.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevLett.114.25530
The Jamming Perspective on Wet Foams
Amorphous materials as diverse as foams, emulsions, colloidal suspensions and
granular media can {\em jam} into a rigid, disordered state where they
withstand finite shear stresses before yielding. The jamming transition has
been studied extensively, in particular in computer simulations of
frictionless, soft, purely repulsive spheres. Foams and emulsions are the
closest realizations of this model, and in foams, the (un)jamming point
corresponds to the wet limit, where the bubbles become spherical and just form
contacts. Here we sketch the relevance of the jamming perspective for the
geometry and flow of foams --- and also discuss the impact that foams studies
may have on theoretical studies on jamming.
We first briefly review insights into the crucial role of disorder in these
systems, culminating in the breakdown of the affine assumption that underlies
the rich mechanics near jamming. Second, we discuss how crucial theoretical
predictions, such as the square root scaling of contact number with packing
fraction, and the nontrivial role of disorder and fluctuations for flow have
been observed in experiments on 2D foams. Third, we discuss a scaling model for
the rheology of disordered media that appears to capture the key features of
the flow of foams, emulsions and soft colloidal suspensions. Finally, we
discuss how best to confront predictions of this model with experimental data.Comment: 7 Figs., 21 pages, Review articl
H_c_3 for a thin-film superconductor with a ferromagnetic dot
We investigate the effect of a ferromagnetic dot on a thin-film
superconductor. We use a real-space method to solve the linearized
Ginzburg-Landau equation in order to find the upper critical field, H_c_3. We
show that H_c_3 is crucially dependent on dot composition and geometry, and may
be significantly greater than H_c_2. H_c_3 is maximally enhanced when (1) the
dot saturation magnetization is large, (2) the ratio of dot thickness to dot
diameter is of order one, and (3) the dot thickness is large
First experimental results of very high accuracy centroiding measurements for the neat astrometric mission
NEAT is an astrometric mission proposed to ESA with the objectives of
detecting Earth-like exoplanets in the habitable zone of nearby solar-type
stars. NEAT requires the capability to measure stellar centroids at the
precision of 5e-6 pixel. Current state-of-the-art methods for centroid
estimation have reached a precision of about 2e-5 pixel at two times Nyquist
sampling, this was shown at the JPL by the VESTA experiment. A metrology system
was used to calibrate intra and inter pixel quantum efficiency variations in
order to correct pixelation errors. The European part of the NEAT consortium is
building a testbed in vacuum in order to achieve 5e-6 pixel precision for the
centroid estimation. The goal is to provide a proof of concept for the
precision requirement of the NEAT spacecraft. In this paper we present the
metrology and the pseudo stellar sources sub-systems, we present a performance
model and an error budget of the experiment and we report the present status of
the demonstration. Finally we also present our first results: the experiment
had its first light in July 2013 and a first set of data was taken in air. The
analysis of this first set of data showed that we can already measure the pixel
positions with an accuracy of about 1e-4 pixel.Comment: SPIE conference proceeding
- …
