1,302 research outputs found

    Intensity of Brillouin light scattering from spin waves in magnetic multilayers with noncollinear spin configurations: Theory and experiment

    Full text link
    The scattering of photons from spin waves (Brillouin light scattering -- BLS) is a well-established technique for the study of layered magnetic systems. The information about the magnetic state and properties of the sample is contained in the frequency position, width, and intensity of the BLS peaks. Previously [Phys. Rev. B 67, 184404 (2003)], we have shown that spin wave frequencies can be conveniently calculated within the ultrathin film approach, treating the intralayer exchange as an effective bilinear interlayer coupling between thin virtual sheets of the ferromagnetic layers. Here we give the consequent extension of this approach to the calculation of the Brillouin light scattering (BLS) peak intensities. Given the very close relation of the BLS cross-section to the magneto-optic Kerr effect (MOKE), the depth-resolved longitudinal and polar MOKE coefficients calculated numerically via the usual magneto-optic formalism can be employed in combination with the spin wave precessional amplitudes to calculate full BLS spectra for a given magnetic system. This approach allows an easy calculation of BLS intensities even for noncollinear spin configurations including the exchange modes. The formalism is applied to a Fe/Cr/Fe/Ag/Fe trilayer system with one antiferromagnetically coupling spacer (Cr). Good agreement with the experimental spectra is found for a wide variety of spin configurations.Comment: 19 pages, 5 figure

    Brillouin scattering studies in Fe3_3O4_4 across the Verwey transition

    Full text link
    Brillouin scattering studies have been carried out on high quality single crystals of Fe3_3O4_4 with [100] and [110] faces in the temperature range of 300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW) mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode frequency shows a minimum at the Verwey transition temperature TVT_V of 123 K. The softening of the SRW mode frequency from about 250 K to TVT_V can be quantitatively understood as a result of a decrease in the shear elastic constant C44_{44}, arising from the coupling of shear strain to charge fluctuations. On the other hand, the LA mode frequency does not show any significant change around TVT_V, but shows a large change in its intensity. The latter shows a maximum at around 120 K in the cooling run and at 165 K in the heating run, exhibiting a large hysteresis of 45 K. This significant change in intensity may be related to the presence of stress-induced ordering of Fe3+^{3+} and Fe2+^{2+} at the octahedral sites, as well as to stress-induced domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200

    Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory

    Full text link
    A double-peaked structure was observed in the {\it in-situ} Brillouin Light Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for values of an external magnetic field HH, applied along the hard in plane direction, lower than a critical value Hc0.9H_c\simeq 0.9 kOe. This experimental finding is theoretically interpreted in terms of a model which assumes a non-homogeneous magnetic ground state characterized by the presence of perperpendicular up/down stripe domains. For such a ground state, two spin-wave modes, namely an acoustic and an optic mode, can exist. Upon increasing the field the magnetization tilts in the film plane, and for HHcH \ge H_{c} the ground state is homogeneous, thus allowing the existence of just a single spin-wave mode. The frequencies of the two spin-wave modes were calculated and successfully compared with the experimental data. The field dependence of the intensities of the corresponding two peaks that are present in the BLS spectra was also estimated, providing further support to the above-mentioned interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical Review

    The case for inclusive area profiling applied in geographic information systems

    Get PDF
    This paper introduces the history and role of consultation processes of contemporary planning and, after presenting the popularity and criticisms of different practices including communities in urban decision making, it explores how rational planning tools like the geographic information system (GIS) could be exploited to reshape consultation and formally include subjective data in traditional area profiling. Focusing on the popular consultation tool of community mapping, primary and secondary research methods (a literature review, seven interviews to planners and two observational studies) identified seven different problems with contemporary community mapping: spatial and temporal scale, generalisation, integration, representativeness, accessibility, relatedness and visualisation. The conceptualisation, physical modelling and testing of a new community mapping procedure ‘Submap’ is then used to address these problems and discuss (a) the strengths and limitations of formalising community mapping activities for area profiling in GIS and (b) the role of pragmatic research in promoting inclusive practices in contemporary planning

    Temporary Intervention and Long Term Legacy: Lessons from London Case Studies

    Get PDF
    The paper explores the issue of temporary projects on vacant land focusing on London in the 2007-2012 downturn. Using a case study approach, a link has been identified between the success of temporary projects and a longer-term vision, as well as a move toward better integration between temporary occupants and developer/land-owner. Within this paradox the whole idea of temporariness is put under question, as is the traditional mainstream depiction of bottom-up in opposition to top-down action. These trends are contextualised within the dynamics of recession that has triggered new types of creative conversations between parties traditionally considered in opposition and may contribute to reframing urban development as an incremental, organic and collaborative process

    Validity of the Polar V800 heart rate monitor to measure RR intervals at rest

    Get PDF
    Purpose To assess the validity of RR intervals and short-term heart rate variability (HRV) data obtained from the Polar V800 heart rate monitor, in comparison to an electrocardiograph (ECG). Method Twenty participants completed an active orthostatic test using the V800 and ECG. An improved method for the identification and correction of RR intervals was employed prior to HRV analysis. Agreement of the data was assessed using intra-class correlation coefficients (ICC), Bland–Altman limits of agreement (LoA), and effect size (ES). Results A small number of errors were detected between ECG and Polar RR signal, with a combined error rate of 0.086 %. The RR intervals from ECG to V800 were significantly different, but with small ES for both supine corrected and standing corrected data (ES 0.999 for both supine and standing corrected intervals. When analysed with the same HRV software no significant differences were observed in any HRV parameters, for either supine or standing; the data displayed small bias and tight LoA, strong ICC (>0.99) and small ES (≤0.029). Conclusions The V800 improves over previous Polar models, with narrower LoA, stronger ICC and smaller ES for both the RR intervals and HRV parameters. The findings support the validity of the Polar V800 and its ability to produce RR interval recordings consistent with an ECG. In addition, HRV parameters derived from these recordings are also highly comparable

    The stroke oxygen pilot study: a randomized control trial of the effects of routine oxygen supplementation early after acute stroke--effect on key outcomes at six months

    Get PDF
    Introduction: Post-stroke hypoxia is common, and may adversely affect outcome. We have recently shown that oxygen supplementation may improve early neurological recovery. Here, we report the six-month outcomes of this pilot study. Methods: Patients with a clinical diagnosis of acute stroke were randomized within 24 h of admission to oxygen supplementation at 2 or 3 L/min for 72 h or to control treatment (room air). Outcomes (see below) were assessed by postal questionnaire at 6 months. Analysis was by intention-to-treat, and statistical significance was set at p#0.05. Results: Out of 301 patients randomized two refused/withdrew consent and 289 (148 in the oxygen and 141 in the control group) were included in the analysis: males 44%, 51%; mean (SD) age 73 (12), 71 (12); median (IQR) National Institutes of Health Stroke Scale score 6 (3, 10), 5 (3, 10) for the two groups respectively. At six months 22 (15%) patients in the oxygen group and 20 (14%) in the control group had died; mean survival in both groups was 162 days (p= 0.99). Median (IQR) scores for the primary outcome, the modified Rankin Scale, were 3 (1, 5) and 3 (1, 4) for the oxygen and control groups respectively. The covariate-adjusted odds ratio was 1.04 (95% CI 0.67, 1.60), indicating that the odds of a lower (i.e. better) score were non-significantly higher in the oxygen group (p= 0.86). The mean differences in the ability to perform basic (Barthel Index) and extended activities of daily living (NEADL), and quality of life (EuroQol) were also non-significant. Conclusions: None of the key outcomes differed at 6 months between the groups. Although not statistically significant and generally of small magnitude, the effects were predominantly in favour of the oxygen group; a larger trial, powered to show differences in longer-term functional outcomes, is now on-going. Trial Registration: Controlled-Trials.com ISRCTN12362720; Eudract.ema.europa.eu 2004-001866-4

    High-performance versatile setup for simultaneous Brillouin-Raman micro-spectroscopy

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physical Society via the DOI in this record.Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here we demonstrate a new concept of fully scanning multimodal micro-spectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150 dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a sub-cellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechano-chemical mapping of highly scattering biological samples.S. Corezzi acknowledges financial support from MIUR-PRIN (Project No. 2012J8X57P). S. Caponi acknowledges support from PAT (Provincia Autonoma di Trento) (GP/PAT/2012) “Grandi Progetti 2012” Project “MaDEleNA.” P. S., A. M., M. P. acknowledge financial support from Centro Nazionale Trapianti (Project: “Studio di cellule per uso clinico umano, con particolare riferimento a modelli cellulari (liposomi) e linee cellulari in interazione con crioconservanti e con materiali biocompatibili”). L. C. and S. Caponi acknowledge financial support from Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali. F. P. acnowledges support from the UK Engineering and Physical Sciences Research Council (Grant No. EP/M028739/1 (F. P.)). The authors acknowledge Jacopo Scarponi for valuable help in setting up the hardware and software system for simultaneous Raman and BLS measurements
    corecore