3,412 research outputs found

    Feed-forward and its role in conditional linear optical quantum dynamics

    Full text link
    Nonlinear optical quantum gates can be created probabilistically using only single photon sources, linear optical elements and photon-number resolving detectors. These gates are heralded but operate with probabilities much less than one. There is currently a large gap between the performance of the known circuits and the established upper bounds on their success probabilities. One possibility for increasing the probability of success of such gates is feed-forward, where one attempts to correct certain failure events that occurred in the gate's operation. In this brief report we examine the role of feed-forward in improving the success probability. In particular, for the non-linear sign shift gate, we find that in a three-mode implementation with a single round of feed-forward the optimal average probability of success is approximately given by p= 0.272. This value is only slightly larger than the general optimal success probability without feed-forward, P= 0.25.Comment: 4 pages, 3 eps figures, typeset using RevTex4, problems with figures resolve

    Black Hole Boundary Conditions and Coordinate Conditions

    Get PDF
    This paper treats boundary conditions on black hole horizons for the full 3+1D Einstein equations. Following a number of authors, the apparent horizon is employed as the inner boundary on a space slice. It is emphasized that a further condition is necessary for the system to be well posed; the ``prescribed curvature conditions" are therefore proposed to complete the coordinate conditions at the black hole. These conditions lead to a system of two 2D elliptic differential equations on the inner boundary surface, which coexist nicely to the 3D equation for maximal slicing (or related slicing conditions). The overall 2D/3D system is argued to be well posed and globally well behaved. The importance of ``boundary conditions without boundary values" is emphasized. This paper is the first of a series. This revised version makes minor additions and corrections to the previous version.Comment: 13 pages LaTeX, revtex. No figure

    Traveling waves in rotating Rayleigh-Bénard convection: Analysis of modes and mean flow

    Get PDF
    Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions and a finite annular domain are presented. These simulations reproduce traveling waves observed experimentally. Traveling waves are studied near threshhold by using the complex Ginzburg-Landau equation (CGLE): a mode analysis enables the CGLE coefficients to be determined. The CGLE coefficients are compared with previous experimental and theoretical results. Mean flows are also computed and found to be more significant as the Prandtl number decreases (from sigma=6.4 to sigma=1). In addition, the mean flow around the outer radius of the annulus appears to be correlated with the mean flow around the inner radius

    High accuracy simulations of black hole binaries:spins anti-aligned with the orbital angular momentum

    Full text link
    High-accuracy binary black hole simulations are presented for black holes with spins anti-aligned with the orbital angular momentum. The particular case studied represents an equal-mass binary with spins of equal magnitude S/m^2=0.43757 \pm 0.00001. The system has initial orbital eccentricity ~4e-5, and is evolved through 10.6 orbits plus merger and ringdown. The remnant mass and spin are M_f=(0.961109 \pm 0.000003)M and S_f/M_f^2=0.54781 \pm 0.00001, respectively, where M is the mass during early inspiral. The gravitational waveforms have accumulated numerical phase errors of <~ 0.1 radians without any time or phase shifts, and <~ 0.01 radians when the waveforms are aligned with suitable time and phase shifts. The waveform is extrapolated to infinity using a procedure accurate to <~ 0.01 radians in phase, and the extrapolated waveform differs by up to 0.13 radians in phase and about one percent in amplitude from the waveform extracted at finite radius r=350M. The simulations employ different choices for the constraint damping parameters in the wave zone; this greatly reduces the effects of junk radiation, allowing the extraction of a clean gravitational wave signal even very early in the simulation.Comment: 14 pages, 15 figure

    On the temperature dependence of the interaction-induced entanglement

    Full text link
    Both direct and indirect weak nonresonant interactions are shown to produce entanglement between two initially disentangled systems prepared as a tensor product of thermal states, provided the initial temperature is sufficiently low. Entanglement is determined by the Peres-Horodeckii criterion, which establishes that a composite state is entangled if its partial transpose is not positive. If the initial temperature of the thermal states is higher than an upper critical value TucT_{uc} the minimal eigenvalue of the partially transposed density matrix of the composite state remains positive in the course of the evolution. If the initial temperature of the thermal states is lower than a lower critical value TlcTucT_{lc}\leq T_{uc} the minimal eigenvalue of the partially transposed density matrix of the composite state becomes negative which means that entanglement develops. We calculate the lower bound TlbT_{lb} for TlcT_{lc} and show that the negativity of the composite state is negligibly small in the interval Tlb<T<TucT_{lb}<T<T_{uc}. Therefore the lower bound temperature TlbT_{lb} can be considered as \textit{the} critical temperature for the generation of entanglement.Comment: 27 pages and 7 figure

    Hot entanglement in a simple dynamical model

    Full text link
    How mixed can one component of a bi-partite system be initially and still become entangled through interaction with a thermalized partner? We address this question here. In particular, we consider the question of how mixed a two-level system and a field mode may be such that free entanglement arises in the course of the time evolution according to a Jaynes-Cummings type interaction. We investigate the situation for which the two-level system is initially in mixed state taken from a one-parameter set, whereas the field has been prepared in an arbitrary thermal state. Depending on the particular choice for the initial state and the initial temperature of the quantised field mode, three cases can be distinguished: (i) free entanglement will be created immediately, (ii) free entanglement will be generated, but only at a later time different from zero, (iii) the partial transpose of the joint state remains positive at all times. It will be demonstrated that increasing the initial temperature of the field mode may cause the joint state to become distillable during the time evolution, in contrast to a non-distillable state at lower initial temperatures. We further assess the generated entanglement quantitatively, by evaluating the logarithmic negativity numerically, and by providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the 'International Conference on Quantum Information', Oviedo, July 13-18, 2002. Discusses sudden changes of entanglement properties in a dynamical quantum mode

    Comparing Post-Newtonian and Numerical-Relativity Precession Dynamics

    Get PDF
    Binary black-hole systems are expected to be important sources of gravitational waves for upcoming gravitational-wave detectors. If the spins are not colinear with each other or with the orbital angular momentum, these systems exhibit complicated precession dynamics that are imprinted on the gravitational waveform. We develop a new procedure to match the precession dynamics computed by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full general relativity. For numerical relativity NR) simulations lasting approximately two precession cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum and the spins agree to better than 1\sim 1^{\circ} with NR during the inspiral, increasing to 55^{\circ} near merger. Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine how the PN equations for precession and orbital-phase evolution converge with PN order, and we quantify the impact of various choices for handling partially known PN terms

    Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations

    Get PDF
    Binary neutron star mergers are promising sources of gravitational waves for ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by these mergers may also be the main source of r-process elements in the Universe, while radioactive decays in the ejecta can power bright electromagnetic post-merger signals. Neutrino-matter interactions play a critical role in the evolution of the composition of the ejected material, which significantly impacts the outcome of nucleosynthesis and the properties of the associated electromagnetic signal. In this work, we present a simulation of a binary neutron star merger using an improved method for estimating the average neutrino energies in our energy-integrated neutrino transport scheme. These energy estimates are obtained by evolving the neutrino number density in addition to the neutrino energy and flux densities. We show that significant changes are observed in the composition of the polar ejecta when comparing our new results with earlier simulations in which the neutrino spectrum was assumed to be the same everywhere in optically thin regions. In particular, we find that material ejected in the polar regions is less neutron rich than previously estimated. Our new estimates of the composition of the polar ejecta make it more likely that the color and timescale of the electromagnetic signal depend on the orientation of the binary with respect to an observer's line-of-sight. These results also indicate that important observable properties of neutron star mergers are sensitive to the neutrino energy spectrum, and may need to be studied through simulations including a more accurate, energy-dependent neutrino transport scheme.Comment: 19p, 17 figures, Accepted by Phys.Rev.
    corecore