744 research outputs found
Recommended from our members
Global sea level budget 1993-present
Global mean sea level is an integral of changes occurring in the climate system in response to
unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal
evolution allows detecting changes (e.g., acceleration) in one or more components. Study of
the sea level budget provides constraints on missing or poorly known contributions, such as
the unsurveyed deep ocean or the still uncertain land water component. In the context of the
World Climate Research Programme Grand Challenge entitled “Regional Sea Level and
Coastal Impacts”, an international effort involving the sea level community worldwide has
been recently initiated with the objective of assessing the various data sets used to estimate
components of the sea level budget during the altimetry era (1993 to present). These data sets
are based on the combination of a broad range of space-based and in situ observations, model
estimates and algorithms. Evaluating their quality, quantifying uncertainties and identifying
sources of discrepancies between component estimates is extremely useful for various
applications in climate research. This effort involves several tens of scientists from about fifty
research teams/institutions worldwide (www.wcrp-climate.org/grand-challenges/gc-sea-
level). The results presented in this paper are a synthesis of the first assessment performed
during 2017-2018. We present estimates of the altimetry-based global mean sea level (average
rate of 3.1 +/- 0.3 mm/yr and acceleration of 0.1 mm/yr2 over 1993-present), as well as of the
different components of the sea level budget (http://doi.org/10.17882/54854). We further
examine closure of the sea level budget, comparing the observed global mean sea level with
the sum of components. Ocean thermal expansion, glaciers, Greenland and Antarctica
contribute by 42%, 21%, 15% and 8% to the global mean sea level over the 1993-present. We
also study the sea level budget over 2005-present, using GRACE-based ocean mass estimates
instead of sum of individual mass components. Results show closure of the sea level budget
within 0.3 mm/yr. Substantial uncertainty remains for the land water storage component, as
shown in examining individual mass contributions to sea level
Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary
To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).
Simulating magnetic field of a ferromagnetic pipe underwater in COMSOL Multiphysics
Nowadays ecological situation in seas and oceans requires permanent supervision and control. Carrying out building activity such as building hydraulic structures, oil- and gas-pipes in areas of past warfare is the reason for the active usage of geophysical methods to search method of the objects underwater. The paper examines the classification of magnetic search methods and theoretical base statements of electromagnetics. The work represents the investigation of an object influence on geomagnetic field in problem-solving environment "COMSOL Multiphysics". The article also contains the results of simulating for variations of different object parameters. This paper is connected with the magnetometric
Correlation of Wettability and Interfacial Reaction to the Densification and Dielectric Properties of Fluxed-BaTiO₃
Reducing the sintering temperature of BaTiO3 has typically been achieved through the use of a fluxing agent to promote densification by liquid phase sintering. Liquid phase formation in these systems is due either to the melting of the flux or to the formation of a eutectic liquid between the flux and BaTiO3. In this paper, the correlation between the wettability and interfacial reactions between fluxes and BaTiO3 with respect to the densification behavior associated with liquid phase sintering, and the resulting dielectric properties is presented. Fluxes used in this study include 5ZnO*2B2O3, 5CdO*2SiO2, Pb5Ge3O11, CuO*TiO2, 3Bi2O3*B2O3, and LiF
A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands
Modelling leaf phenology in water-controlled ecosystems remains a difficult task because of high spatial and temporal variability in the interaction of plant growth and soil moisture. Here, we move beyond widely used linear models to examine the performance of low-dimensional, nonlinear ecohydrological models that couple the dynamics of plant cover and soil moisture. The study area encompasses 400 000 km2 of semi-arid perennial tropical grasslands, dominated by C4 grasses, in the Northern Territory and Queensland (Australia). We prepared 8-year time series (2001-2008) of climatic variables and estimates of fractional vegetation cover derived from MODIS Normalized Difference Vegetation Index (NDVI) for 400 randomly chosen sites, of which 25% were used for model calibration and 75% for model validation. We found that the mean absolute error of linear and nonlinear models did not markedly differ. However, nonlinear models presented key advantages: (1) they exhibited far less systematic error than their linear counterparts; (2) their error magnitude was consistent throughout a precipitation gradient while the performance of linear models deteriorated at the driest sites, and (3) they better captured the sharp transitions in leaf cover that are observed under high seasonality of precipitation. Our results showed that low-dimensional models including feedbacks between soil water balance and plant growth adequately predict leaf dynamics in semi-arid perennial grasslands. Because these models attempt to capture fundamental ecohydrological processes, they should be the favoured approach for prognostic models of phenology
The economic burden of HIV/AIDS on individuals and households in Nepal: a quantitative study.
BACKGROUND: There have been only limited studies assessing the economic burden of HIV/AIDS in terms of direct costs, and there has been no published study related to productivity costs in Nepal. Therefore, this study explores in detail the economic burden of HIV/AIDS, including direct costs and productivity costs. This paper focuses on the direct costs of seeking treatment, productivity costs, and related factors affecting direct costs, and productivity costs. METHODS: This study was a cross-sectional, quantitative study. The primary data were collected through a structured face-to-face survey from 415 people living with HIV/AIDS (PLHIV). The study was conducted in six representative treatment centres of six districts of Nepal. The data analysis regarding the economic burden (direct costs and productivity costs) was performed from the household's perspective. Descriptive statistics have been used, and regression analyses were applied to examine the extent, nature and determinants of the burden of the disease, and its correlations. RESULTS: Average total costs due to HIV/AIDS (the sum of average total direct and average productivity costs before adjustment for coping strategies) were Nepalese Rupees (NRs) 2233 per month (US 20.4), and average productivity costs (before adjustment for coping strategies) were NRs 721 (US$ 9.7). The average monthly productivity losses (before adjustment for coping strategies) were 5.05 days per person. The major determinants for the direct costs were household income, occupation, health status of respondents, respondents accompanied or not, and study district. Health status of respondents, ethnicity, sexual orientation and study district were important determinants for productivity costs. CONCLUSIONS: The study concluded that HIV/AIDS has caused a significant economic burden for PLHIV and their families in Nepal. The study has a number of policy implications for different stakeholders. Provision of social support and income generating programmes to HIV-affected individuals and their families, and decentralising treatment services in each district seem to be viable solutions to reduce the economic burden of HIV-affected individuals and households
Dynamic emotional expressions do not modulate responses to gestures
The tendency to imitate the actions of others appears to be a fundamental aspect of human social interaction.
Emotional expressions are a particularly salient form of social stimuli (Vuilleumier & Schwartz, 2001) but their
relationship to imitative behaviour is currently unclear. In this paper we report the results of five studies which
investigated the effect of a target’s dynamic emotional stimuli on participants’ tendency to respond compatibly
to the target’s actions. Experiment one examined the effect of dynamic emotional expressions on the automatic
imitation of opening and closing hand movements. Experiment two used the same basic paradigm but added gaze
direction as an additional factor. Experiment three investigated the effect of dynamic emotional expressions on
compatibility responses to handshakes. Experiment four investigated whether dynamic emotional expressions
modulated response to valenced social gestures. Finally, experiment five compared the effects of dynamic and
static emotional expressions on participants’ automatic imitation of finger lifting. Across all five studies we
reliably elicited a compatibility effect however, none of the studies found a significant modulating effect of
emotional expression. This null effect was also supported by a random effects meta-analysis and a series of
Bayesian t-tests. Nevertheless, these results must be caveated by the fact that our studies had limited power to
detect effect sizes below d = 0.4. We conclude by situating our findings within the literature, suggesting that the
effect of emotional expressions on automatic imitation is, at best, minimal
- …
