1,515 research outputs found
Collective intellectual property rights for the development of creative tourist districts: an exploration
In this paper the institution of Collective Intellectual Property Rights (CIPR) is proposed as a regulatory tool for the development of Creative Tourist Districts based on local knowledge and trust, described as a superior organisational model of destinations to alternative models founded on individual property. As there are various types and contexts of applications of CIPR, as well as different development objectives to be achieved, the paper designs a strategy to maximise the expected impacts from case to case. It then proposes “area labels”, based on a combination of controls on quality and delimitation of areas of validity of the right, as the best instrument to foster a strategic orientation to quality across the local tourism industry.
Photoinduced Changes of Reflectivity in Single Crystals of YBa2Cu3O6.5 (Ortho II)
We report measurements of the photoinduced change in reflectivity of an
untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay
rate of the transient change in reflectivity is found to decrease rapidly with
decreasing temperature and, below Tc, with decreasing laser intensity. We
interpret the decay as a process of thermalization of antinodal quasiparticles,
whose rate is determined by an inelastic scattering rate of quasiparticle
pairs.Comment: 4 pages, 4 figure
Competition and Post-Transplant Outcomes in Cadaveric Liver Transplantation under the MELD Scoring System
Previous researchers have modelled the decision to accept a donor organ for transplantation as a Markov decision problem, the solution to which is often a control-limit optimal policy: accept any organ whose match quality exceeds some health-dependent threshold; otherwise, wait for another. When competing transplant centers vie for the same organs, the decision rule changes relative to no competition; the relative size of competing centers affects the decision rules as well. Using center-specific graft and patient survival-rate data for cadaveric adult livers in the United States, we have found empirical evidence supporting these predictions.liver transplantation, competition, optimal stopping
The Finite Field Kakeya Problem
A Besicovitch set in AG(n,q) is a set of points containing a line in every
direction. The Kakeya problem is to determine the minimal size of such a set.
We solve the Kakeya problem in the plane, and substantially improve the known
bounds for n greater than 4.Comment: 13 page
Competition and Post-Transplant Outcomes in Cadaveric Liver Transplantation under the MELD Scoring System
Previous researchers have modelled the decision to accept a donor organ for transplantation as a Markov decision problem, the solution to which is often a control-limit optimal policy: accept any organ whose match quality exceeds some health-dependent threshold; otherwise, wait for another. When competing transplant centers vie for the same organs, the decision rule changes relative to no competition; the relative size of competing centers affects the decision rules as well. Using center-specific graft and patient survival-rate data for cadaveric adult livers in the United States, we have found empirical evidence supporting these predictions.liver transplantation; competition; optimal stopping
On Binary Matroid Minors and Applications to Data Storage over Small Fields
Locally repairable codes for distributed storage systems have gained a lot of
interest recently, and various constructions can be found in the literature.
However, most of the constructions result in either large field sizes and hence
too high computational complexity for practical implementation, or in low rates
translating into waste of the available storage space. In this paper we address
this issue by developing theory towards code existence and design over a given
field. This is done via exploiting recently established connections between
linear locally repairable codes and matroids, and using matroid-theoretic
characterisations of linearity over small fields. In particular, nonexistence
can be shown by finding certain forbidden uniform minors within the lattice of
cyclic flats. It is shown that the lattice of cyclic flats of binary matroids
have additional structure that significantly restricts the possible locality
properties of -linear storage codes. Moreover, a collection of
criteria for detecting uniform minors from the lattice of cyclic flats of a
given matroid is given, which is interesting in its own right.Comment: 14 pages, 2 figure
Surfaces containing a family of plane curves not forming a fibration
We complete the classification of smooth surfaces swept out by a
1-dimensional family of plane curves that do not form a fibration. As a
consequence, we characterize manifolds swept out by a 1-dimensional family of
hypersurfaces that do not form a fibration.Comment: Author's post-print, final version published online in Collect. Mat
q-breathers in Discrete Nonlinear Schroedinger lattices
-breathers are exact time-periodic solutions of extended nonlinear systems
continued from the normal modes of the corresponding linearized system. They
are localized in the space of normal modes. The existence of these solutions in
a weakly anharmonic atomic chain explained essential features of the
Fermi-Pasta-Ulam (FPU) paradox. We study -breathers in one- two- and
three-dimensional discrete nonlinear Sch\"{o}dinger (DNLS) lattices --
theoretical playgrounds for light propagation in nonlinear optical waveguide
networks, and the dynamics of cold atoms in optical lattices. We prove the
existence of these solutions for weak nonlinearity. We find that the
localization of -breathers is controlled by a single parameter which depends
on the norm density, nonlinearity strength and seed wave vector. At a critical
value of that parameter -breathers delocalize via resonances, signaling a
breakdown of the normal mode picture and a transition into strong mode-mode
interaction regime. In particular this breakdown takes place at one of the
edges of the normal mode spectrum, and in a singular way also in the center of
that spectrum. A stability analysis of -breathers supplements these
findings. For three-dimensional lattices, we find -breather vortices, which
violate time reversal symmetry and generate a vortex ring flow of energy in
normal mode space.Comment: 19 pages, 9 figure
Free-energy transition in a gas of non-interacting nonlinear wave-particles
We investigate the dynamics of a gas of non-interacting particle-like soliton
waves, demonstrating that phase transitions originate from their collective
behavior. This is predicted by solving exactly the nonlinear equations and by
employing methods of the statistical mechanics of chaos. In particular, we show
that a suitable free energy undergoes a metamorphosis as the input excitation
is increased, thereby developing a first order phase transition whose
measurable manifestation is the formation of shock waves. This demonstrates
that even the simplest phase-space dynamics, involving independent (uncoupled)
degrees of freedom, can sustain critical phenomena.Comment: 4 pages, 3 figure
- …
