756 research outputs found
The magnetic connectivity of coronal shocks from behind-the-limb flares to the visible solar surface during -ray events
Context. The observation of >100 MeV {\gamma}-rays in the minutes to hours
following solar flares suggests that high-energy particles interacting in the
solar atmosphere can be stored and/or accelerated for long time periods. The
occasions when {\gamma}-rays are detected even when the solar eruptions
occurred beyond the solar limb as viewed from Earth provide favorable viewing
conditions for studying the role of coronal shocks driven by coronal mass
ejections (CMEs) in the acceleration of these particles.
Aims: In this paper, we investigate the spatial and temporal evolution of the
coronal shocks inferred from stereoscopic observations of behind-the-limb
flares to determine if they could be the source of the particles producing the
{\gamma}-rays.
Methods: We analyzed the CMEs and early formation of coronal shocks
associated with {\gamma}-ray events measured by the Fermi-Large Area Telescope
(LAT) from three eruptions behind the solar limb as viewed from Earth on 2013
Oct. 11, 2014 Jan. 06 and Sep. 01. We used a 3D triangulation technique, based
on remote-sensing observations to model the expansion of the CME shocks from
above the solar surface to the upper corona. Coupling the expansion model to
various models of the coronal magnetic field allowed us to derive the
time-dependent distribution of shock Mach numbers and the magnetic connection
of particles produced by the shock to the solar surface visible from Earth.
Results: The reconstructed shock fronts for the three events became
magnetically connected to the visible solar surface after the start of the
flare and just before the onset of the >100 MeV {\gamma}-ray emission. The
shock surface at these connections also exhibited supercritical Mach numbers
required for significant particle energization.
[...] (Abridged)Comment: 20 pages, 15 figures, version published in A&
Global Energetics of Thirty-Eight Large Solar Eruptive Events
We have evaluated the energetics of 38 solar eruptive events observed by a
variety of spacecraft instruments between February 2002 and December 2006, as
accurately as the observations allow. The measured energetic components
include: (1) the radiated energy in the GOES 1 - 8 A band; (2) the total energy
radiated from the soft X-ray (SXR) emitting plasma; (3) the peak energy in the
SXR-emitting plasma; (4) the bolometric radiated energy over the full duration
of the event; (5) the energy in flare-accelerated electrons above 20 keV and in
flare-accelerated ions above 1 MeV; (6) the kinetic and potential energies of
the coronal mass ejection (CME); (7) the energy in solar energetic particles
(SEPs) observed in interplanetary space; and (8) the amount of free
(nonpotential) magnetic energy estimated to be available in the pertinent
active region. Major conclusions include: (1) the energy radiated by the
SXR-emitting plasma exceeds, by about half an order of magnitude, the peak
energy content of the thermal plasma that produces this radiation; (2) the
energy content in flare-accelerated electrons and ions is sufficient to supply
the bolometric energy radiated across all wavelengths throughout the event; (3)
the energy contents of flare-accelerated electrons and ions are comparable; (4)
the energy in SEPs is typically a few percent of the CME kinetic energy
(measured in the rest frame of the solar wind); and (5) the available magnetic
energy is sufficient to power the CME, the flare-accelerated particles, and the
hot thermal plasma
INTEGRAL/IBIS search for e-e+ annihilation radiation from the Galactic Center Region
Electron-positron annihilation radiation from the Galactic Center region has
been detected since the seventies, but its astrophysical origin is still a
topic of a scientific debate. We have analyzed data of the gamma-ray imager
IBIS/ISGRI onboard of ESA's INTEGRAL platform in the ee line.
During the first year of the missions Galactic Center Deep Exposure no evidence
for point sources at 511 keV has been found in the ISGRI data; the
upper limit for resolved single point sources is estimated to be .Comment: 6 pages, 3 figures; Cospar 2004. To be published in: Advances in
Space Researc
The Concordance Cosmic Star Formation Rate: Implications from and for the Supernova Neutrino and Gamma Ray Backgrounds
We constrain the Cosmic Star Formation Rate (CSFR) by requiring that massive
stars produce the observed UV, optical, and IR light while at the same time not
overproduce the Diffuse Supernova Neutrino Background as bounded by
Super-Kamiokande. With the massive star component so constrained we then show
that a reasonable choice of stellar Initial Mass Function and other parameters
results in SNIa rates and iron yields in good agreement with data. In this way
we define a `concordance' CSFR that predicts the optical SNII rate and the SNIa
contribution to the MeV Cosmic Gamma-Ray Background. The CSFR constrained to
reproduce these and other proxies of intermediate and massive star formation is
more clearly delineated than if it were measured by any one technique and has
the following testable consequences: (1) SNIa contribute only a small fraction
of the MeV Cosmic Gamma-Ray Background, (2) massive star core-collapse is
nearly always accompanied by a successful optical SNII, and (3) the Diffuse
Supernova Neutrino Background is tantalizingly close to detectability.Comment: Improved discussion. Version accepted for publication in JCA
Global Energetics of Large Solar Eruptive Events
We have evaluated the energetics of the larger solar eruptive events recorded with a variety of spacecraft instruments between February 2002 and December 2006. All of the energetically important components of the flares and of the accompanying coronal mass ejections and solar energetic particles have been evaluated as accurately as the observations allow. These components include the following : (1) the total energy in the high temperature plasma determined from the RHESSI thermal X-ray observations; (2) the total energies in accelerated electrons above 20 keV and ions above 1 MeV from RHESSI hard X-ray and gamma-ray observations, respectively; (3) the potential and kinetic energies of the CME from SOHO/LASCO observations; (4) the solar energetic particle (SEP) energy estimates from in situ measurements on ACE, GOES, and SOHO; (5) the total radiated energy from the SORCEITSI measurements where available, and otherwise from the Flare Irradiance Spectral Model (FISM). The results are assimilated and discussed relative to the probable amount of non potential magnetic energy estimated to be available in the flaring active regions from MDI line-of-sight magnetograms
Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere
We report on measurements of the cosmic-ray induced gamma-ray emission of
Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray
Space Telescope. The LAT has observed the Earth during its commissioning phase
and with a dedicated Earth-limb following observation in September 2008. These
measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours
total livetime for the highest quality data selection. This allows the study of
the spatial and spectral distributions of these photons with unprecedented
detail. The spectrum of the emission - often referred to as Earth albedo
gamma-ray emission - has a power-law shape up to 500 GeV with spectral index
Gamma = 2.79+-0.06.Comment: Accepted for publication in PR
Neutron capture and 2.2 MeV emission in the atmosphere of the secondary of an X-ray binary
We consider the production of 2.22 MeV radiation resulting from the capture
of neutrons in the atmosphere of the secondary in an X-ray binary system, where
the neutrons are produced in the accretion disk around the compact primary star
and radiated in all directions. We have considered several accretion disk
models (ADAF, ADIOS, SLE, Uniform-Temperature) and a varity of parameters
(accretion rate, mass of the compact object, mass, temperature and composition
of the secondary star, distance between the two objects, etc.). The neutron
rates are calculated by a network of nuclear reactions in the accretion disk,
and this is handled by a reaction-rate formulation taking into account the
structure equations given by each accretion model. The processes undergone by
the neutrons in the atmosphere of the companion star are studied in great
detail, including thermalization, elastic and inelastic scatterings,
absorption, escape from the surface, decay, and capture by protons. The
radiative transfer of the 2.22 MeV photons is treated separately, taking into
consideration the composition and density of the star's atmosphere. The final
flux of the 2.22 MeV radiation that can be detected from earth is calculated
taking into account the distance to the source, the direction of observation
with respect to the binary system frame, and the rotation of the source, as
this can lead to an observable periodicity in the flux. We produce phasograms
of the 2.22 MeV intensity as well as spectra of the line, where rotational
Doppler shift effects can lead to changes in the spectra that are measurable by
INTEGRAL's spectrometer (SPI).Comment: 13 pages, 10 figures, A&A in pres
Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array
The internal structure of the Clark fault in the trifurcation area of the San Jacinto fault zone is imaged using seismograms recorded by a dense linear array (Jackass Flat, JF) crossing the surface trace of the fault and an adjacent array (TR) to the SW. Delay times between phase arrivals associated with ∼3500 local earthquakes and nine teleseismic events are used to estimate velocity variations within the arrays. The teleseismic P waves travel faster beneath the TR than the JF array, in contrast to larger scale tomographic results. Statistical analysis of local P-wave delay times indicates that the entire JF array, with an aperture of ∼400 m, is inside a low-velocity damage zone. This low-velocity zone is bounded on the NE side by a shallow bimaterial interface generating fault zone head waves, and it contains an inner zone of more intense damage generating fault zone trapped waves. The P-wave velocity contrast across the local bounding bimaterial interface is 10–15 per cent. The trapping structure is associated with a width of ∼200 m, S-wave velocity reduction of ∼35 per cent with respect to the surrounding rock, Q-value of ∼20 and depth of ∼3.5 km. The imaging results suggest that the main seismogenic fault is near the SW end of the JF array, in agreement with a prominent geomorphologic feature. The existence of intense local damage on the crustal block with faster larger scale velocity at depth is consistent with common propagation of earthquake ruptures in the area to the NW
- …
