2,987 research outputs found

    Broken symmetries and pattern formation in two-frequency forced Faraday waves

    Full text link
    We exploit the presence of approximate (broken) symmetries to obtain general scaling laws governing the process of pattern formation in weakly damped Faraday waves. Specifically, we consider a two-frequency forcing function and trace the effects of time translation, time reversal and Hamiltonian structure for three illustrative examples: hexagons, two-mode superlattices, and two-mode rhomboids. By means of explicit parameter symmetries, we show how the size of various three-wave resonant interactions depends on the frequency ratio m:n and on the relative temporal phase of the two driving terms. These symmetry-based predictions are verified for numerically calculated coefficients, and help explain the results of recent experiments.Comment: 4 pages, 6 figure

    Infrasonic Detection of a Large Bolide over South Sulawesi, Indonesia on October 8, 2009: Preliminary Results

    Get PDF
    In the morning hours of October 8, 2009, a bright object entered Earth's atmosphere over South Sulawesi, Indonesia. This bolide disintegrated above the ground, generating stratospheric infrasound returns that were detected by infrasonic stations of the global International Monitoring System (IMS) Network of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) at distances up to 17 500 km. Here we present instrumental recordings and preliminary results of this extraordinary event. Using the infrasonic period-yield relations, originally derived for atmospheric nuclear detonations, we find the most probable source energy for this bolide to be 70+/-20 kt TNT equivalent explosive yield. A unique aspect of this event is the fact that it was apparently detected by infrasound only. Global events of such magnitude are expected only once per decade and can be utilized to calibrate infrasonic location and propagation tools on a global scale, and to evaluate energy yield formula, and event timing

    STAT1 activation in association with JAK2 exon 12 mutations

    Get PDF
    La inclusión de la perspectiva de género en la actividad jurisdiccional es una demanda sostenida de los colectivos feministas y de mujeres, dado que las sentencias tienen un poder performativo y envían un mensaje a la sociedad: “[…] tienen un poder individual y colectivo que impactan en la vida de las personas y conforman la identidad del poder judicial como un actor imprescindible en la construcción de un Estado democrático de derecho” (Suprema Corte de Justicia de la Nación, 2013:7). La incorporación de la perspectiva de género viene a garantizar la igualdad de posiciones (Kessler, 2014) entre mujeres y varones como una meta, trascendiendo la mera igualdad de oportunidades que hasta el presente se ha demostrado insuficiente para que las mujeres consigamos una ciudadanía plena. Al momento de incorporar la perspectiva de género en las sentencias, quienes juzgan deben tener presente en primer lugar, el impacto diferenciado de las normas en base al sexo de las personas. En segundo lugar, la interpretación y aplicación de las leyes en relación con (y en base a) estereotipos de género. Si, por ejemplo, quienes imparten justicia no tienen presentes los estereotipos de género vigentes detrás de las violaciones a los derechos humanos de las mujeres, si no los detectan ni cuestionan, entonces los reproducen. Tal como sostiene Scott (1996) el género es una categoría imprescindible para el análisis social. En tercer lugar, al momento del juzgamiento, se deben tener en cuenta las exclusiones legitimadas por la ley por pensar el mundo en términos binarios y androcéntricos; en cuarto lugar, la distribución no equitativa de recursos y poder que opera entre varones y mujeres en el marco de una organización social patriarcal, y, por último, el trato diferenciado por género legitimado por las propias leyes.Eje 3: Tramas violentas y espacios de exclusión.Instituto de Cultura Jurídic

    Bifurcations of periodic orbits with spatio-temporal symmetries

    Get PDF
    Motivated by recent analytical and numerical work on two- and three-dimensional convection with imposed spatial periodicity, we analyse three examples of bifurcations from a continuous group orbit of spatio-temporally symmetric periodic solutions of partial differential equations. Our approach is based on centre manifold reduction for maps, and is in the spirit of earlier work by Iooss (1986) on bifurcations of group orbits of spatially symmetric equilibria. Two examples, two-dimensional pulsating waves (PW) and three-dimensional alternating pulsating waves (APW), have discrete spatio-temporal symmetries characterized by the cyclic groups Z_n, n=2 (PW) and n=4 (APW). These symmetries force the Poincare' return map M to be the nth iterate of a map G: M=G^n. The group orbits of PW and APW are generated by translations in the horizontal directions and correspond to a circle and a two-torus, respectively. An instability of pulsating waves can lead to solutions that drift along the group orbit, while bifurcations with Floquet multiplier +1 of alternating pulsating waves do not lead to drifting solutions. The third example we consider, alternating rolls, has the spatio-temporal symmetry of alternating pulsating waves as well as being invariant under reflections in two vertical planes. This leads to the possibility of a doubling of the marginal Floquet multiplier and of bifurcation to two distinct types of drifting solutions. We conclude by proposing a systematic way of analysing steady-state bifurcations of periodic orbits with discrete spatio-temporal symmetries, based on applying the equivariant branching lemma to the irreducible representations of the spatio-temporal symmetry group of the periodic orbit, and on the normal form results of Lamb (1996). This general approach is relevant to other pattern formation problems, and contributes to our understanding of the transition from ordered to disordered behaviour in pattern-forming systems

    НАУКОВІ ДОСЛІДЖЕННЯ ВЧЕНИХ КВГУ-КГІ-ДГІ В ГАЛУЗІ МЕТАЛУРГІЇ (1900-1930 рр.)

    Get PDF
    Перші зародки промислового вуглевидобутку на Півдні Російської імперії (Лисячий Байрак під Лисичанськом) і виробництва металу (м. Луганськ) виник-ли у 90-х роках ХVІІІ с. У наступні десятиліття ці взаємопов’язані галузі розвивалися дуже повільно. А трохи раніше спроба почати видобуток залізної руди і виплавку з неї гарматних ядер на Криворіжжі була невдалою, тому майже на сто років про ці поклади руд забули

    The adjoint problem in the presence of a deformed surface: the example of the Rosensweig instability on magnetic fluids

    Full text link
    The Rosensweig instability is the phenomenon that above a certain threshold of a vertical magnetic field peaks appear on the free surface of a horizontal layer of magnetic fluid. In contrast to almost all classical hydrodynamical systems, the nonlinearities of the Rosensweig instability are entirely triggered by the properties of a deformed and a priori unknown surface. The resulting problems in defining an adjoint operator for such nonlinearities are illustrated. The implications concerning amplitude equations for pattern forming systems with a deformed surface are discussed.Comment: 11 pages, 1 figur

    Parametrically Excited Surface Waves: Two-Frequency Forcing, Normal Form Symmetries, and Pattern Selection

    Get PDF
    Motivated by experimental observations of exotic standing wave patterns in the two-frequency Faraday experiment, we investigate the role of normal form symmetries in the pattern selection problem. With forcing frequency components in ratio m/n, where m and n are co-prime integers, there is the possibility that both harmonic and subharmonic waves may lose stability simultaneously, each with a different wavenumber. We focus on this situation and compare the case where the harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic waves have a shorter wavelength. We show that in the former case a normal form transformation can be used to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions. Thus the role of resonant triads in the pattern selection problem is greatly diminished in this situation. We verify our general results within the example of one-dimensional surface wave solutions of the Zhang-Vinals model of the two-frequency Faraday problem. In one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic waves in the case of forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and Vinals. In sharp contrast, we find that when the forcing frequencies are in ratio 2/3, the bifurcation to (sub)harmonic waves is insensitive to the presence of another spatially-resonant bifurcating mode.Comment: 22 pages, 6 figures, late
    corecore