3,466 research outputs found
Adnexal Torsion in Pediatric Age: Does Bolli's Score Work? Report of Two Cases
Adnexal torsion is a surgical emergency requiring early diagnosis in order to avoid demolitive surgery. Adnexal torsion's diagnosis could be very difficult in pediatric patients because children cannot explain symptoms accurately. Furthermore reproductive organs lie high in abdomen, causing unclear examinations findings. For reducing diagnostic mistakes or delay clinical and hematological criteria could be useful. No radiological criteria (CT or MRI) should be taken in count because of the costs and the required time. By combining clinical presentation in patients with OT three useful diagnostic variables have been identified: age, duration of pain, vomiting. Presence of vomiting, short duration of abdominal pain and high CRP levels have great predictive value for the diagnosis of adnexal torsion. In those patients an exploratory laparoscopy should be performed without any doubt and/or delay. These data may aid physicians in the evaluation of abdominal pain in premenarchal girls
High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths
We report on the design, fabrication and testing of a set of high performance
corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced
prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission.
The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70
GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and
by electro-formation at higher frequencies. The measured performances on side
lobes and return loss meet the stringent Planck requirements over the large
(20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape
and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental
Astronom
Planck LFI flight model feed horns
this paper is part of the Prelaunch status LFI papers published on JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/jinst The Low Frequency
Instrument is optically interfaced with the ESA Planck telescope through 11
corrugated feed horns each connected to the Radiometer Chain Assembly (RCA).
This paper describes the design, the manufacturing and the testing of the
flight model feed horns. They have been designed to optimize the LFI optical
interfaces taking into account the tight mechanical requirements imposed by the
Planck focal plane layout. All the eleven units have been successfully tested
and integrated with the Ortho Mode transducers.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in JINST. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The definitive publisher authenticated version is available
online at 10.1088/1748-0221/4/12/T1200
GIANO-TNG spectroscopy of red supergiants in the young star cluster RSGC2
The inner disk of the Galaxy has a number of young star clusters dominated by
red supergiants that are heavily obscured by dust extinction and observable
only at infrared wavelengths. These clusters are important tracers of the
recent star formation and chemical enrichment history in the inner Galaxy.
During the technical commissioning and as a first science verification of the
GIANO spectrograph at the Telescopio Nazionale Galileo, we secured
high-resolution (R~50,000) near-infrared spectra of three red supergiants in
the young Scutum cluster RSGC2. Taking advantage of the full YJHK spectral
coverage of GIANO in a single exposure, we were able to identify several tens
of atomic and molecular lines suitable for chemical abundance determinations.
By means of spectral synthesis and line equivalent width measurements, we
obtained abundances of Fe and other iron-peak elements such as V, Cr, Ni, of
alpha (O, Mg, Si, Ca and Ti) and other light elements (C, N, Na, Al, K, Sc),
and of some s-process elements (Y, Sr). We found iron abundances between half
and one third solar and solar-scaled [X/Fe] abundance patterns of iron-peak,
alpha and most of the light elements, consistent with a thin-disk chemistry. We
found a depletion of [C/Fe] and enhancement of [N/Fe], consistent with CN
burning, and low 12C/13C abundance ratios (between 9 and 11), requiring
extra-mixing processes in the stellar interiors during the post-main sequence
evolution. Finally, we found a slight [Sr/Fe] enhancement and a slight [Y/Fe]
depletion (by a factor of <=2), with respect to solar.Comment: Paper accepted on A&
The TNG Near Infrared Camera Spectrometer
NICS (acronym for Near Infrared Camera Spectrometer) is the near-infrared
cooled camera-spectrometer that has been developed by the Arcetri Infrared
Group at the Arcetri Astrophysical Observatory, in collaboration with the
CAISMI-CNR for the TNG (the Italian National Telescope Galileo at La Palma,
Canary Islands, Spain).
As NICS is in its scientific commissioning phase, we report its observing
capabilities in the near-infrared bands at the TNG, along with the measured
performance and the limiting magnitudes. We also describe some technical
details of the project, such as cryogenics, mechanics, and the system which
executes data acquisition and control, along with the related software.Comment: 7 pages, 5 figures, compiled with A&A macros. A&A in pres
An evaluation of |Vus| and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays
We present a global analysis of leptonic and semileptonic kaon decay data,
including all recent results published by the BNL-E865, KLOE, KTeV, ISTRA+ and
NA48 experiments. This analysis, in conjunction with precise lattice
calculations of the hadronic matrix elements now available, leads to a very
precise determination of |Vus| and allows us to perform several stringent tests
of the Standard Model.Comment: LaTeX, 25 pages, 12 figures, 16 tables. Submitted to EPJC. v2: Minor
changes for accepted version. No numerical results change
Noninvasiveness and time symmetry of weak measurements
Measurements in classical and quantum physics are described in fundamentally
different ways. Nevertheless, one can formally define similar measurement
procedures with respect to the disturbance they cause. Obviously, strong
measurements, both classical and quantum, are invasive -- they disturb the
measured system. We show that it is possible to define general weak
measurements, which are noninvasive: the disturbance becomes negligible as the
measurement strength goes to zero. Classical intuition suggests that
noninvasive measurements should be time symmetric (if the system dynamics is
reversible) and we confirm that correlations are time-reversal symmetric in the
classical case. However, quantum weak measurements -- defined analogously to
their classical counterparts -- can be noninvasive but not time symmetric. We
present a simple example of measurements on a two-level system which violates
time symmetry and propose an experiment with quantum dots to measure the
time-symmetry violation in a third-order current correlation function.Comment: 19 pages, 5 figures, more information at
http://www.fuw.edu.pl/~abednorz/tasym
GPU-based Real-time Triggering in the NA62 Experiment
Over the last few years the GPGPU (General-Purpose computing on Graphics
Processing Units) paradigm represented a remarkable development in the world of
computing. Computing for High-Energy Physics is no exception: several works
have demonstrated the effectiveness of the integration of GPU-based systems in
high level trigger of different experiments. On the other hand the use of GPUs
in the low level trigger systems, characterized by stringent real-time
constraints, such as tight time budget and high throughput, poses several
challenges. In this paper we focus on the low level trigger in the CERN NA62
experiment, investigating the use of real-time computing on GPUs in this
synchronous system. Our approach aimed at harvesting the GPU computing power to
build in real-time refined physics-related trigger primitives for the RICH
detector, as the the knowledge of Cerenkov rings parameters allows to build
stringent conditions for data selection at trigger level. Latencies of all
components of the trigger chain have been analyzed, pointing out that
networking is the most critical one. To keep the latency of data transfer task
under control, we devised NaNet, an FPGA-based PCIe Network Interface Card
(NIC) with GPUDirect capabilities. For the processing task, we developed
specific multiple ring trigger algorithms to leverage the parallel architecture
of GPUs and increase the processing throughput to keep up with the high event
rate. Results obtained during the first months of 2016 NA62 run are presented
and discussed
Poincare gauge theory of gravity: Friedman cosmology with even and odd parity modes. Analytic part
We propose a cosmological model in the framework of the Poincar\'e gauge
theory of gravity (PG). The gravitational Lagrangian is quadratic in curvature
and torsion. In our specific model, the Lagrangian contains (i) the curvature
scalar and the curvature pseudo-scalar linearly and quadratically
(including an term) and (ii) pieces quadratic in the torsion {\it vector}
and the torsion {\it axial} vector (including a term). We show generally that in quadratic PG models we have nearly
the same number of parity conserving terms (`world') and of parity violating
terms (`shadow world'). This offers new perspectives in cosmology for the
coupling of gravity to matter and antimatter. Our specific model generalizes
the fairly realistic `torsion cosmologies' of Shie-Nester-Yo (2008) and Chen et
al.\ (2009). With a Friedman type ansatz for an orthonormal coframe and a
Lorentz connection, we derive the two field equations of PG in an explicit form
and discuss their general structure in detail. In particular, the second field
equation can be reduced to first order ordinary differential equations for the
curvature pieces and . Including these along with certain
relations obtained from the first field equation and curvature definitions, we
present a first order system of equations suitable for numerical evaluation.
This is deferred to the second, numerical part of this paper.Comment: Latex computerscript, 25 pages; mistakes corrected, references added,
notation and title slightly changed; accepted by Phys. Rev.
- …
