14,030 research outputs found
Ending Neglect of older people in the response to Humanitarian Emergencies
Older people make up a significant and growing number of those affected by humanitarian crises, yet they are often not sought out or prioritised within the humanitarian response. Humanitarian agencies, donors, and international bodies neglect older people's health and nutrition. The gaps in knowledge and research about the needs of older people in emergencies are considerable. Older people are not monitored in emergencies and they are not prioritised despite evidence of disproportionate mortality and morbidity in this group. We call for policy changes by humanitarian agencies and donors to ensure that the needs of this vulnerable group are met
Man-computer role in space navigation and guidance Final report
Man computer roles and hardware requirements for navigation and guidance in deep space manned mission
Man-computer roles in space navigation and guidance, phase I
Estimated man-machine requirement computations for space navigation and guidanc
Gyroscopic pumping of large-scale flows in stellar interiors, and application to Lithium Dip stars
The maintenance of large-scale differential rotation in stellar convective
regions by rotationally influenced convective stresses also drives large-scale
meridional flows by angular--momentum conservation. This process is an example
of ``gyroscopic pumping'', and has recently been studied in detail in the solar
context. An important question concerns the extent to which these
gyroscopically pumped meridional flows penetrate into nearby stably stratified
(radiative) regions, since they could potentially be an important source of
non-local mixing. Here we present an extensive study of the gyroscopic pumping
mechanism, using a combination of analytical calculations and numerical
simulations both in Cartesian geometry and in spherical geometry. The various
methods, when compared with one another, provide physical insight into the
process itself, as well as increasingly sophisticated means of estimating the
gyroscopic pumping rate. As an example of application, we investigate the
effects of this large-scale mixing process on the surface abundances of the
light elements Li and Be for stars in the mass range 1.3-1.5 solar masses
(so-called ``Li-dip stars''). We find that gyroscopic pumping is a very
efficient mechanism for circulating material between the surface and the deep
interior, so much in fact that it over-estimates Li and Be depletion by orders
of magnitude for stars on the hot side of the dip.However, when the diffusion
of chemical species back into the surface convection zone is taken into
account, a good fit with observed surface abundances of Li and Be as a function
of stellar mass in the Hyades cluster can be found for reasonable choices of
model parameters.Comment: Submitted to Ap
Bubble Raft Model for a Paraboloidal Crystal
We investigate crystalline order on a two-dimensional paraboloid of
revolution by assembling a single layer of millimeter-sized soap bubbles on the
surface of a rotating liquid, thus extending the classic work of Bragg and Nye
on planar soap bubble rafts. Topological constraints require crystalline
configurations to contain a certain minimum number of topological defects such
as disclinations or grain boundary scars whose structure is analyzed as a
function of the aspect ratio of the paraboloid. We find the defect structure to
agree with theoretical predictions and propose a mechanism for scar nucleation
in the presence of large Gaussian curvature.Comment: 4 pages, 4 figure
Laser-induced break-up of water jet waveguide
In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser (λ=532nm). The jet diameter was 48µm and jet velocities from 100 to 200m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jet
On the penetration of meridional circulation below the solar convection zone
Meridional flows with velocities of a few meters per second are observed in
the uppermost regions of the solar convection zone. The amplitude and pattern
of the flows deeper in the solar interior, in particular near the top of the
radiative region, are of crucial importance to a wide range of solar
magnetohydrodynamical processes. In this paper, we provide a systematic study
of the penetration of large-scale meridional flows from the convection zone
into the radiative zone. In particular, we study the effects of the assumed
boundary conditions applied at the convective-radiative interface on the deeper
flows. Using simplified analytical models in conjunction with more complete
numerical methods, we show that penetration of the convectively-driven
meridional flows into the deeper interior is not necessarily limited to a
shallow Ekman depth but can penetrate much deeper, depending on how the
convective-radiative interface flows are modeled.Comment: 13 pages, 5 figures. Subitted to Ap
The Origin of Solar Activity in the Tachocline
Solar active regions, produced by the emergence of tubes of strong magnetic
field in the photosphere, are restricted to within 35 degrees of the solar
equator. The nature of the dynamo processes that create and renew these fields,
and are therefore responsible for solar magnetic phenomena, are not well
understood. We analyze the magneto-rotational stability of the solar tachocline
for general field geometry. This thin region of strong radial and latitudinal
differential rotation, between the radiative and convective zones, is unstable
at latitudes above 37 degrees, yet is stable closer to the equator. We propose
that small-scale magneto-rotational turbulence prevents coherent magnetic
dynamo action in the tachocline except in the vicinity of the equator, thus
explaining the latitudinal restriction of active regions. Tying the magnetic
dynamo to the tachocline elucidates the physical conditions and processes
relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ
Higher-order Continuum Approximation for Rarefied Gases
The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight
times is believed to be asymptotic rather than convergent. It is therefore
inadvisable to use lower order results to simplify the current approximation as
is done in the traditional Chapman-Enskog procedure, since that is an iterative
method. By avoiding such recycling of lower order results, one obtains
macroscopic equations that are asymptotically equivalent to the ones found in
the Chapman-Enskog approach. The new equations contain higher order terms that
are discarded in the Chapman-Enskog method. These make a significant impact on
the results for such problems as ultrasound propagation. In this paper, it is
shown that these results turn out well with relatively little complication when
the expansions are carried to second order in the mean free time, for the
example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro
Suppressing Diffusion-Mediated Exciton Annihilation in 2D Semiconductors Using the Dielectric Environment
Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit
nonlinear exciton-exciton annihilation at notably low excitation densities
(below ~10 excitons/um2 in MoS2). Here, we show that the density threshold at
which annihilation occurs can be tuned by changing the underlying substrate.
When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate
constant for second-order exciton-exciton annihilation, k_XX [cm2/s], is
reduced by one or two orders of magnitude, respectively. Using transient
photoluminescence microscopy, we measure the effective room-temperature exciton
diffusion coefficient in chemical-treated MoS2 to be D = 0.06 +/- 0.01 cm2/s,
corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of
{\tau} = 20 ns, which is independent of the substrate. These results, together
with numerical simulations, suggest that the effective exciton-exciton
annihilation radius monotonically decreases with increasing refractive index of
the underlying substrate. Exciton-exciton annihilation limits the overall
efficiency of 2D semiconductor devices operating at high exciton densities; the
ability to tune these interactions via the dielectric environment is an
important step toward more efficient optoelectronic technologies featuring
atomically thin materials
- …
