1,607 research outputs found

    Early Thermal Evolution of Planetesimals and its Impact on Processing and Dating of Meteoritic Material

    Full text link
    Radioisotopic ages for meteorites and their components provide constraints on the evolution of small bodies: timescales of accretion, thermal and aqueous metamorphism, differentiation, cooling and impact metamorphism. Realising that the decay heat of short-lived nuclides (e.g. 26Al, 60Fe), was the main heat source driving differentiation and metamorphism, thermal modeling of small bodies is of utmost importance to set individual meteorite age data into the general context of the thermal evolution of their parent bodies, and to derive general conclusions about the nature of planetary building blocks in the early solar system. As a general result, modelling easily explains that iron meteorites are older than chondrites, as early formed planetesimals experienced a higher concentration of short-lived nuclides and more severe heating. However, core formation processes may also extend to 10 Ma after formation of Calcium-Aluminum-rich inclusions (CAIs). A general effect of the porous nature of the starting material is that relatively small bodies (< few km) will also differentiate if they form within 2 Ma after CAIs. A particular interesting feature to be explored is the possibility that some chondrites may derive from the outer undifferentiated layers of asteroids that are differentiated in their interiors. This could explain the presence of remnant magnetization in some chondrites due to a planetary magnetic field.Comment: 24 pages, 9 figures, Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Complementarity relation for irreversible process derived from stochastic energetics

    Full text link
    When the process of a system in contact with a heat bath is described by classical Langevin equation, the method of stochastic energetics [K. Sekimoto, J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of Helmholtz free energy and the dissipation function of the system. We prove that the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min, where S_min depends on the initial and the final values of the control parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro

    Bethe anzats derivation of the Tracy-Widom distribution for one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to a many body quantum boson system with attractive interactions. Performing the summation over the entire spectrum of excited states the problem is reduced to the Fredholm determinant with the Airy kernel which is known to yield the Tracy-Widom distributionComment: 5 page

    A Combined System for Update Logic and Belief Revision

    Get PDF
    Revised Selected PapersInternational audienceIn this paper we propose a logical system combining the update logic of A. Baltag, L. Moss and S. Solecki (to which we will refer to by the generic term BMS, [BMS04]) with the belief revision theory as conceived by C. Alchourron, P. Gardenfors and D. Mackinson (that we will call the AGM theory, [GardRott95]) viewed from the point of view of W. Spohn ( [Spohn90], [Spohn88]). We also give a proof system and a comparison with the AGM postulates

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio

    RankPL: A Qualitative Probabilistic Programming Language

    Full text link
    In this paper we introduce RankPL, a modeling language that can be thought of as a qualitative variant of a probabilistic programming language with a semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used to represent and reason about processes that exhibit uncertainty expressible by distinguishing "normal" from" surprising" events. RankPL allows (iterated) revision of rankings over alternative program states and supports various types of reasoning, including abduction and causal inference. We present the language, its denotational semantics, and a number of practical examples. We also discuss an implementation of RankPL that is available for download

    Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to the NN-particle quantum boson system with attractive interactions. We find the full set of eigenfunctions and eigenvalues of this many-body system and perform the summation over the entire spectrum of excited states. It is shown that in the thermodynamic limit the problem is reduced to the Fredholm determinant with the Airy kernel yielding the universal Tracy-Widom distribution, which is known to describe the statistical properties of the Gaussian unitary ensemble as well as many other statistical systems.Comment: 23 page

    Quantum transport through single-molecule junctions with orbital degeneracies

    Full text link
    We consider electronic transport through a single-molecule junction where the molecule has a degenerate spectrum. Unlike previous transport models, and theories a rate-equations description is no longer possible, and the quantum coherences between degenerate states have to be taken into account. We present the derivation and application of a master equation that describes the system in the weak-coupling limit and give an in-depth discussion of the parameter regimes and the new phenomena due to coherent on-site dynamics

    A numerical approach to large deviations in continuous-time

    Full text link
    We present an algorithm to evaluate the large deviation functions associated to history-dependent observables. Instead of relying on a time discretisation procedure to approximate the dynamics, we provide a direct continuous-time algorithm, valuable for systems with multiple time scales, thus extending the work of Giardin\`a, Kurchan and Peliti (PRL 96, 120603 (2006)). The procedure is supplemented with a thermodynamic-integration scheme, which improves its efficiency. We also show how the method can be used to probe large deviation functions in systems with a dynamical phase transition -- revealed in our context through the appearance of a non-analyticity in the large deviation functions.Comment: Submitted to J. Stat. Mec

    The One-dimensional KPZ Equation and the Airy Process

    Full text link
    Our previous work on the one-dimensional KPZ equation with sharp wedge initial data is extended to the case of the joint height statistics at n spatial points for some common fixed time. Assuming a particular factorization, we compute an n-point generating function and write it in terms of a Fredholm determinant. For long times the generating function converges to a limit, which is established to be equivalent to the standard expression of the n-point distribution of the Airy process.Comment: 15 page
    corecore