1,078 research outputs found
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
The Milnor-Chow homomorphism revisited
The aim of this note is to give a simplified proof of the surjectivity of the
natural Milnor-Chow homomorphism between Milnor
-theory and higher Chow groups for essentially smooth (semi-)local
-algebras with infinite. It implies the exactness of the Gersten
resolution for Milnor -theory at the generic point. Our method uses the
Bloch-Levine moving technique and some properties of the Milnor -theory norm
for fields.Comment: 8 page
Response of Multi-strip Multi-gap Resistive Plate Chamber
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with
active area 40 cm 20 cm has been developed at SINP, Kolkata. Detailed
response of the developed detector was studied with the pulsed electron beam
from ELBE at Helmholtz-Zentrum Dresden-Rossendorf. In this report the response
of SINP developed MMRPC with different controlling parameters is described in
details. The obtained time resolution () of the detector after slew
correction was 91.53 ps. Position resolution measured along ()
and across () the strip was 2.80.6 cm and 0.58 cm, respectively.
The measured absolute efficiency of the detector for minimum ionizing particle
like electron was 95.81.3 . Better timing resolution of the detector
can be achieved by restricting the events to a single strip. The response of
the detector was mainly in avalanche mode but a few percentage of streamer mode
response was also observed. A comparison of the response of these two modes
with trigger rate was studiedComment: 19 pages, 26 figure
Correlation of pre-operative cancer imaging techniques with post-operative gross and microscopic pathology images
In this paper, different algorithms for volume reconstruction from tomographic cross-sectional pathology slices are described and tested. A tissue-mimicking phantom made with a mixture of agar and aluminium oxide was sliced at different thickness as per pathological standard guidelines. Phantom model was also virtually sliced and reconstructed in software. Results showed that shape-based spline interpolation method was the most precise, but generated a volume underestimation of 0.5%
Large-scale Graphitic Thin Films Synthesized on Ni and Transferred to Insulators: Structural and Electronic Properties
We present a comprehensive study of the structural and electronic properties
of ultrathin films containing graphene layers synthesized by chemical vapor
deposition (CVD) based surface segregation on polycrystalline Ni foils then
transferred onto insulating SiO2/Si substrates. Films of size up to several
mm's have been synthesized. Structural characterizations by atomic force
microscopy (AFM), scanning tunneling microscopy (STM), cross-sectional
transmission electron microscopy (XTEM) and Raman spectroscopy confirm that
such large scale graphitic thin films (GTF) contain both thick graphite regions
and thin regions of few layer graphene. The films also contain many wrinkles,
with sharply-bent tips and dislocations revealed by XTEM, yielding insights on
the growth and buckling processes of the GTF. Measurements on mm-scale
back-gated transistor devices fabricated from the transferred GTF show
ambipolar field effect with resistance modulation ~50% and carrier mobilities
reaching ~2000 cm^2/Vs. We also demonstrate quantum transport of carriers with
phase coherence length over 0.2 m from the observation of 2D weak
localization in low temperature magneto-transport measurements. Our results
show that despite the non-uniformity and surface roughness, such large-scale,
flexible thin films can have electronic properties promising for device
applications.Comment: This version (as published) contains additional data, such as cross
sectional TEM image
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Adsorbate-induced structural changes in 1-3 nm platinum nanoparticles
We investigated changes in the Pt–Pt bond distance, particle size, crystallinity, and coordination of Pt nanoparticles as a function of particle size (1–3 nm) and adsorbate (H2, CO) using synchrotron radiation pair distribution function (PDF) and X-ray absorption spectroscopy (XAS) measurements. The ∼1 nm Pt nanoparticles showed a Pt–Pt bond distance contraction of ∼1.4%. The adsorption of H2 and CO at room temperature relaxed the Pt–Pt bond distance contraction to a value close to that of bulk fcc Pt. The adsorption of H2 improved the crystallinity of the small Pt nanoparticles. However, CO adsorption generated a more disordered fcc structure for the 1–3 nm Pt nanoparticles compared to the H2 adsorption Pt nanoparticles. In situ XANES measurements revealed that this disorder results from the electron back-donation of the Pt nanoparticles to CO, leading to a higher degree of rehybridization of the metal orbitals in the Pt-adsorbate system
Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2)
We demonstrate the first application of synthetic RNA gene silencers in Streptomyces coelicolor A3(2). Peptide nucleic acid and expressed antisense RNA silencers successfully inhibited actinorhodin production. Synthetic RNA silencing was target-specific and is a new tool for gene regulation and metabolic engineering studies in Streptomyces.Peer reviewe
Observing non-classical crystallisation processes in gypsum via infrared attenuated total reflectance spectroscopy
The nature of crystallisation processes is of major interest, as they are among the most frequently occurring reactions associated with a variety of relevant processes in chemistry, biochemistry, and geochemistry. In this study, an innovative approach towards fundamentally understanding crystallisation pathways in a seemingly simple system-gypsum-has been developed via infrared spectroscopic techniques. Specifically, infrared attenuated total reflection spectroscopy (IR-ATR) was instrumental in revealing detailed information on inter- and intramolecular interactions during gypsum crystallization via subtle changes in the vibrational spectra of the involved reactants. When applying D2O as an isotope marker, it was shown that isotopically labelled water may serve as a viable spectroscopic probe during mid-infrared (3-15 µm) studies providing unique insight into the crystallization process at molecular-level detail. In addition, it was revealed that H2O and D2O give rise to distinctly different reaction kinetics during the crystallization process
- …
