185 research outputs found
Team-skills training and real-time facilitation as a means for developing student teachers’ learning of collaboration
This mixed-methods study investigates whether and how team-skills training and real-time facilitation can enhance students' learning of collaboration. Two hundred and fifty-seven student teachers carried out a group task at two different levels of intervention. The findings show that the intervention had a positive impact on the students’ perceived learning outcomes and on stimulating group reflection. We also identified four enabling structures of the task design. The study contributes to literature on how collaborative learning activities in higher education can be facilitated and argues that cultivating a language around the subject of collaboration is a prerequisite for developing transferrable collaborative skills.publishedVersio
Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome
Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome wide siRNA screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies
Cytotoxicity, in Vivo Skin Irritation and Acute Systemic Toxicity of the Mesoporous Magnesium Carbonate Upsalite ®
Abstract Upsalite ® is a mesoporous magnesium carbonate synthesized without using surfactants and therefore highly attractive from environmental and production economy points of view. The material has recently been suggested as drug delivery vehicle and as topical bacteriostatic agent. In order to continue exploring these and other bio-related applications of the material, primary biocompatibility studies are needed. Herein we present the first in vivo acute systemic toxicity and skin irritation analyses as well as in vitro cytotoxicity evaluations of Upsalite ® . The material was found to be non-toxic for human dermal fibroblasts cells up to a concentration of 1000 µg/ml and 48 h exposure in contrast to the mesoporous silica material SBA-15, used as reference, which significantly affected cell viability at particle concentration of 500 and 1000 µg/ml after the same exposure time. Topical application of Upsalite ® resulted in negligible cutaneous reactions in a rabbit skin irritation model and no evidence of significant systemic toxicity was found when saline extracts of Upsalite ® were injected in mice. Injection of sesame oil extract, however, resulted in transient weight loss, most likely due to injection of particles, and not toxic leachables. The presented results form the basis for future development of Upsalite ® and similar mesoporous materials in biomedical applications and further toxicity as well as biocompatibility studies should be directed towards specific areas of use
Neurobiology of social behavior abnormalities in autism and Williams syndrome
Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities
Route knowledge and configural knowledge in typical and atypical development: a comparison of sparse and rich environments
Background:
Individuals with Down syndrome (DS) and individuals with Williams syndrome (WS) have poor
navigation skills, which impact their potential to become independent. Two aspects of navigation were investigated
in these groups, using virtual environments (VE): route knowledge (the ability to learn the way from A to B by
following a fixed sequence of turns) and configural knowledge (knowledge of the spatial relationships between
places within an environment).
Methods:
Typically developing (TD) children aged 5 to 11 years (N = 93), individuals with DS (N = 29) and individuals
with WS (N = 20) were presented with a sparse and a rich VE grid maze. Within each maze, participants were asked to
learn a route from A to B and a route from A to C before being asked to find a novel shortcut from B to C.
Results:
Performance was broadly similar across sparse and rich mazes. The majority of participants were able to learn
novel routes, with poorest performance in the DS group, but the ability to find a shortcut, our measure of configural knowledge, was limited for all three groups. That is, 59 % TD participants successfully found a shortcut, compared to 10 % participants with DS and 35 % participants with WS. Differences in the underlying mechanisms associated with route knowledge and configural knowledge and in the developmental trajectories of performance across groups were observed. Only the TD participants walked a shorter distance in the last shortcut trial compared to the first, indicative of
increased configural knowledge across trials. The DS group often used an alternative strategy to get from B to C, summing the two taught routes together.
Conclusions:
Our findings demonstrate impaired configural knowledge in DS and in WS, with the strongest deficit in DS. This suggests that these groups rely on a rigid route knowledge based method for navigating and as a result are
likely to get lost easily. Route knowledge was also impaired in both DS and WS groups and was related to different underlying processes across all three groups. These are discussed with reference to limitations in attention and/or visuo-spatial processing in the atypical groups
Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification
Composites of nanocellulose and the conductive polymer polypyrrole (PPy) are presented as candidates for a new generation of haemodialysis membranes. The composites may combine active ion exchange with passive ultrafiltration, and the large surface area (about 80 m2 g−1) could potentially provide compact dialysers. Herein, the haemocompatibility of the novel membranes and the feasibility of effectively removing small uraemic toxins by potential-controlled ion exchange were studied. The thrombogenic properties of the composites were improved by applying a stable heparin coating. In terms of platelet adhesion and thrombin generation, the composites were comparable with haemocompatible polymer polysulphone, and regarding complement activation, the composites were more biocompatible than commercially available membranes. It was possible to extract phosphate and oxalate ions from solutions with physiological pH and the same tonicity as that of the blood. The exchange capacity of the materials was found to be 600 ± 26 and 706 ± 31 μmol g−1 in a 0.1 M solution (pH 7.4) and in an isotonic solution of phosphate, respectively. The corresponding values with oxalate were 523 ± 5 in a 0.1 M solution (pH 7.4) and 610 ± 1 μmol g−1 in an isotonic solution. The heparinized PPy–cellulose composite is consequently a promising haemodialysis material, with respect to both potential-controlled extraction of small uraemic toxins and haemocompatibility
Entering the era of precision medicine to treat amyotrophic lateral sclerosis
With the disease modifying therapy Qalsody (tofersen) which targets the RNA product of the SOD1 gene, having been shown effective in amyotrophic lateral sclerosis (ALS), the present perspective seeks to explore progress towards the implementation of precision medicine principles in ALS drug development. We address the advances in our understanding of the complex genetic architecture of ALS, including the varying models of genetic contribution to disease, and the importance of understanding population genetics and genetic testing when considering patient selection for clinical studies. Additionally, we discuss the advances in long-read whole-genome sequencing technology and how this method can improve streamlined genetic testing and our understanding of the genetic heterogeneity in ALS. We highlight the recent advances in omics-data for understanding ALS patient sub-groups and how this knowledge should be applied to pre-clinical drug development in a proposed patient profiling workflow, particularly for gene targeted therapies. Finally, we summarise key ethical considerations that are pertinent to equitable care for patients, as we enter the era of precision medicine to treat ALS
- …
