4,438 research outputs found

    Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    Get PDF
    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data

    Large-wavelength instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers

    Full text link
    We study the linear stability of the flow of a viscous electrically conducting capillary fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field. We first confirm that the Squire transformation for MHD is compatible with the stress and insulating boundary conditions at the free surface, but argue that unless the flow is driven at fixed Galilei and capillary numbers, the critical mode is not necessarily two-dimensional. We then investigate numerically how a flow-normal magnetic field, and the associated Hartmann steady state, affect the soft and hard instability modes of free surface flow, working in the low magnetic Prandtl number regime of laboratory fluids. Because it is a critical layer instability, the hard mode is found to exhibit similar behaviour to the even unstable mode in channel Hartmann flow, in terms of both the weak influence of Pm on its neutral stability curve, and the dependence of its critical Reynolds number Re_c on the Hartmann number Ha. In contrast, the structure of the soft mode's growth rate contours in the (Re, alpha) plane, where alpha is the wavenumber, differs markedly between problems with small, but nonzero, Pm, and their counterparts in the inductionless limit. As derived from large wavelength approximations, and confirmed numerically, the soft mode's critical Reynolds number grows exponentially with Ha in inductionless problems. However, when Pm is nonzero the Lorentz force originating from the steady state current leads to a modification of Re_c(Ha) to either a sublinearly increasing, or decreasing function of Ha, respectively for problems with insulating and conducting walls. In the former, we also observe pairs of Alfven waves, the upstream propagating wave undergoing an instability at large Alfven numbers.Comment: 58 pages, 16 figure

    Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic

    Get PDF
    Many authors have recognized that traffic under the traditional car-following model (CFM) is subject to flow instabilities. A recent model achieves stability using bilateral control (BCM)—by looking both forward and backward [1]. (Looking back may be difficult or distracting for human drivers, but is not a problem for sensors.) We analyze the underlying systems of differential equations by studying their eigenvalues and eigenvectors under various boundary conditions. Simulations further confirm that bilateral control can avoid instabilities and reduce the chance of collisions

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.

    Thermal fluctuation field for current-induced domain wall motion

    Full text link
    Current-induced domain wall motion in magnetic nanowires is affected by thermal fluctuation. In order to account for this effect, the Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and literature often utilizes the fluctuation-dissipation theorem to characterize statistical properties of the thermal fluctuation field. However, the theorem is not applicable to the system under finite current since it is not in equilibrium. To examine the effect of finite current on the thermal fluctuation, we adopt the influence functional formalism developed by Feynman and Vernon, which is known to be a useful tool to analyze effects of dissipation and thermal fluctuation. For this purpose, we construct a quantum mechanical effective Hamiltonian describing current-induced domain wall motion by generalizing the Caldeira-Leggett description of quantum dissipation. We find that even for the current-induced domain wall motion, the statistical properties of the thermal noise is still described by the fluctuation-dissipation theorem if the current density is sufficiently lower than the intrinsic critical current density and thus the domain wall tilting angle is sufficiently lower than pi/4. The relation between our result and a recent result, which also addresses the thermal fluctuation, is discussed. We also find interesting physical meanings of the Gilbert damping alpha and the nonadiabaticy parameter beta; while alpha characterizes the coupling strength between the magnetization dynamics (the domain wall motion in this paper) and the thermal reservoir (or environment), beta characterizes the coupling strength between the spin current and the thermal reservoir.Comment: 16 page, no figur

    Water Demand Management in England and Wales: constructions of the domestic water-user

    Get PDF
    YesMeasures to manage demand include implicit and explicit messages about domestic water-users which have important potential impacts on their perceptions and practices. Drawing on recent literature, this paper identifies three different ¿dimensions¿ along which demand management measures¿ constructions of the water-user may vary: these relate to whether the water user is passive or active, whether they are motivated by individual or common needs, and whether they perceive water as a right or a commodity. Demand management measures currently used in England and Wales are then discussed and analysed. The paper concludes by highlighting the importance of communications associated with demand management, and in particular, notes the need to consider the cumulative impact of messages and their interactions with people¿s existing understandings

    On Approximation of the Eigenvalues of Perturbed Periodic Schrodinger Operators

    Full text link
    This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrodinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and illustrate its effectiveness by several examples.Comment: 17 pages, 2 tables and 2 figure

    Daubechies wavelets as a basis set for density functional pseudopotential calculations

    Full text link
    Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package. This code shows high systematic convergence properties, very good performances and an excellent efficiency for parallel calculations.Comment: 15 pages, 11 figure

    Numerical Integration of Nonlinear Wave Equations for General Relativity

    Get PDF
    A second-order numerical implementation is given for recently derived nonlinear wave equations for general relativity. The Gowdy T3^3 cosmology is used as a test bed for studying the accuracy and convergence of simulations of one-dimensional nonlinear waves. The complete freedom in space-time slicing in the present formulation is exploited to compute in the Gowdy line-element. Second-order convergence is found by direct comparison of the results with either analytical solutions for polarized waves, or solutions obtained from Gowdy's reduced wave equations for the more general unpolarized waves. Some directions for extensions are discussed.Comment: 19 pages (LaTex), 3 figures (ps

    Rapid measurement of three-dimensional diffusion tensor

    Get PDF
    In this article, the authors demonstrate a rapid NMR method to measure a full three-dimensional diffusion tensor. This method is based on a multiple modulation multiple echo sequence and utilizes static and pulsed magnetic field gradients to measure diffusion along multiple directions simultaneously. The pulse sequence was optimized using a well-known linear inversion metric (condition number) and successfully tested on both isotropic (water) and anisotropic (asparagus) diffusion systems.open4
    corecore