2,822 research outputs found

    Hydrodynamic emission of strange and non-strange particles at RHIC and LHC

    Full text link
    The hydrodynamic model is used to describe the single-particle spectra and elliptic flow of hadrons at RHIC and to predict the emission angle dependence of HBT correlations at RHIC and LHC energies.Comment: 6 pages LaTeX, 3 postscript figures. Proceedings for the conference "Strange Quark Matter 2003", Atlantic Beach, NC, March 12-17, 2003, to appear in J. Phys.

    Estimations of Ωˉ+/Ω\bar{\Omega}^+/\Omega^- at RHIC from a QGP Model with Diquarks

    Full text link
    Assuming that axial-vector and scalar diquarks exist in the Quark-Gluon Plasma near the critical temporature TcT_c, baryons can be produced from quark-diquark interactions. In RHIC conditions (sNN=130GeV\sqrt{s_{NN}} = 130GeV and 200GeV200GeV), the ratio Ωˉ+/Ω\bar{\Omega}^+/\Omega^- may be larger than 1, based on the concept that QGP with diquarks would exist. This unusual result might be a helpful evidence for QGP existing in RHIC.Comment: 6 pages, 1 figure. accepted by J.Phys.

    The STAR Silicon Strip Detector (SSD)

    Full text link
    The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.Comment: 11 pages, 8 figures, 1 tabl

    Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase

    Full text link
    We discuss hadron production in heavy ion collisions at RHIC. We argue that hadrons at transverse momenta P_T < 5 GeV are formed by recombination of partons from the dense parton phase created in central collisions at RHIC. We provide a theoretical description of the recombination process for P_T > 2 GeV. Below P_T = 2 GeV our results smoothly match a purely statistical description. At high transverse momentum hadron production is well described in the language of perturbative QCD by the fragmentation of partons. We give numerical results for a variety of hadron spectra, ratios and nuclear suppression factors. We also discuss the anisotropic flow v_2 and give results based on a flow in the parton phase. Our results are consistent with the existence of a parton phase at RHIC hadronizing at a temperature of 175 MeV and a radial flow velocity of 0.55c.Comment: 25 pages LaTeX, 18 figures; v2: some references updated; v3: some typos fixe

    Detector and Front-end electronics for ALICE and STAR silicon strip layers

    Get PDF
    Detector modules consisting of Silicon Strip Detector (SSD) and Front End Electronics (FEE) assembly have been designed in order to provide the two outer layers of the ALICE Inner Tracker System (ITS) [1] as well as the outer layer of the STAR Silicon Vertex Tracker (SVT) [2]. Several prototypes have beenproduced and tested in the SPS and PS beam at CERN to validate the final design. Double-sided, AC-coupled SSD detectors provided by two different manufacturers and also a pair of single-sided SSD have been asssociated to new low-power CMOS ALICE128C ASIC chips in a new detector module assembly. The same detectors have also been associated to current Viking electronics for reference purpose. These prototype detector modules are described and some first results are presented

    Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV

    Full text link
    The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Production of e+ee^+e^- Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision

    Get PDF
    We present the first data on e+ee^+e^- pair production accompanied by nuclear breakup in ultra-peripheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order corrections to the pair production cross section should be enhanced. We compare the pair kinematic distributions with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED); the latter includes the photon virtuality. The cross section, pair mass, rapidity and angular distributions are in good agreement with both calculations. The pair transverse momentum, pTp_T, spectrum agrees with the QED calculation, but not with the equivalent photon approach. We set limits on higher-order contributions to the cross section. The e+e^+ and ee^- pTp_T spectra are similar, with no evidence for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in Phys. Rev.

    Azimuthal anisotropy of K0s and Lambda prduction at mid-rapidity from Au+Au collisions at root s = 130 GeV

    Full text link
    We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Comment: 6 pages, 4 figures, by the STAR collaboratio
    corecore