22 research outputs found
Hydromagnetic Mixed Convective Nanofluid Slip Flow past an Inclined Stretching Plate in the Presence of Internal Heat Absorption and Suction
The steady two-dimensional mixed convective boundary layer flow of nanofluid over an inclined stretching plate with the effects of magnetic field, slip boundary conditions, suction and internal heat absorption have been investigated numerically. Two different types of nanoparticles, namely copper and alumina with water as the base fluid are considered. Similarity transformations are employed to transform the governing nonlinear partial differential equations into coupled non-linear ordinary differential equations. The influence of pertinent parameters such as magnetic interaction parameter, angle of inclination, volume fraction, suction parameter, velocity slip parameter, thermal jump parameter, heat absorption parameter, mixed convection parameter and Prandtl number on the flow and heat transfer characteristics are discussed. A representative set of results are displayed graphically to illustrate the issue of governing parameters on the dimensionless velocity and temperature. Numerical values of skin friction coefficient and the Nusselt number are shown in tabular form. A comparative study between the previously published work and the present results in a limiting sense reveals excellent agreement between them
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified
Effect of magnetic field on Blasius and Sakiadis flow of nanofluids past an inclined plate
A theoretical study on the effect of magnetic field on the classical Blasius and Sakiadis flow of nanofluids over an inclined plate is presented in this paper. The governing partial differential equations are converted into ordinary differential equations using suitable similarity transformations. The transformed boundary layer equations are solved numerically using MATLAB (bvp4c). Two types of nanoparticles are chosen namely copper and alumina in the base fluid of water with the Prandtl number (Pr = 6.2). The effects of the governing physical parameters over the velocity, temperature, skin friction coefficient and reduced Nusselt number for both the Blasius and Sakiadis flows are displayed graphically. The characteristics of physical and engineering interest are discussed in detail. Keywords: Nanofluid, Blasius flow, Sakiadis flow, MHD, Inclined plate, Mixed convectio
Hydromagnetic Mixed Convective Nanofluid Slip Flow past an Inclined Stretching Plate in the Presence of Internal Heat Absorption and Suction
Changing landscapes in the neuroimaging of dementia
Neuroimaging in dementia has advanced several folds in the past decade. It has evolved from diagnosing secondary causes of dementia to the current use in identifying primary dementia and aid in clinically perplexing situations. There has been a leap in the imaging technology that can virtually dissect the brain with a high degree of radiopathological correlation. The neuroimaging in dementia is classified into structural, functional, and molecular imaging. Structural imaging includes voxel-based morphometry and diffusion tensor imaging. Functional imaging includes 18F-fluorodeoxy glucose positron emission tomography imaging, 99mTc hexamethylpropyleneamineoxime single photon emission computed tomography imaging, and functional magnetic resonance imaging studies. Molecular imaging includes amyloid imaging, tau imaging, and translocated protein imaging. These advancements have led to using neuroimaging as a biomarker in assessing the progression and also in deciphering prognosis of the disease. In this article, we discuss the current clinical relevance of these neurological advancements
Hydrogen Peroxide and GA3 Levels Regulate the High Night Temperature Response in Pistils of Wheat (Triticum aestivum L.)
High night temperature (HNT) impairs crop productivity through the reproductive failure of gametes (pollen and pistil). Though female gametophyte (pistil) is an equal partner in the seed-set, the knowledge of the antioxidant system(s) and hormonal control of HNT tolerance or susceptibility of pistils is limited and lacking. The objectives of this study were to determine the antioxidant mechanism for homeostatic control of free radicals, and the involvement of abscisic acid (ABA) and gibberellic acid (GA3) in HNT stress protection in the wheat pistils of contrasting wheat genotypes. We hypothesized that HNT tolerance is attributed to the homeostatic control of reactive oxygen species (ROS) and hormonal readjustment in pistils of the tolerant genotype. The ears of two contrasting wheat genotypes—HD 2329 (susceptible) and Raj 3765 (tolerant) were subjected to two HNTs (+5 °C and +8 °C) over ambient, in the absence and presence of dimethylthiourea (DMTU), a chemical trap of hydrogen peroxide (H2O2). Results showed that HNTs significantly increased ROS in pistils of susceptible genotype HD 2329 to a relatively greater extent compared to tolerant genotype Raj 3765. The response was similar in the presence or absence of DMTU, but the H2O2 values were lower in the presence of DMTU. The ROS levels were balanced by increased activity of peroxidase under HNT to a greater extent in the tolerant genotype. Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) activity was inversely related to H2O2 production within a critical range in Raj 3765, indicating its modulation by H2O2 levels as no change was observed at the transcriptional level. The hormonal status showed increased ABA and decreased GA3 contents with increasing temperature. Our study elucidates the role of H2O2 and GA3 in stress tolerance of pistils of tolerant genotype where GAPC acts as a ROS sensor due to H2O2-mediated decrease in its activity.</jats:p
Hydrogen Peroxide and GA<sub>3</sub> Levels Regulate the High Night Temperature Response in Pistils of Wheat (<i>Triticum aestivum</i> L.)
High night temperature (HNT) impairs crop productivity through the reproductive failure of gametes (pollen and pistil). Though female gametophyte (pistil) is an equal partner in the seed-set, the knowledge of the antioxidant system(s) and hormonal control of HNT tolerance or susceptibility of pistils is limited and lacking. The objectives of this study were to determine the antioxidant mechanism for homeostatic control of free radicals, and the involvement of abscisic acid (ABA) and gibberellic acid (GA3) in HNT stress protection in the wheat pistils of contrasting wheat genotypes. We hypothesized that HNT tolerance is attributed to the homeostatic control of reactive oxygen species (ROS) and hormonal readjustment in pistils of the tolerant genotype. The ears of two contrasting wheat genotypes—HD 2329 (susceptible) and Raj 3765 (tolerant) were subjected to two HNTs (+5 °C and +8 °C) over ambient, in the absence and presence of dimethylthiourea (DMTU), a chemical trap of hydrogen peroxide (H2O2). Results showed that HNTs significantly increased ROS in pistils of susceptible genotype HD 2329 to a relatively greater extent compared to tolerant genotype Raj 3765. The response was similar in the presence or absence of DMTU, but the H2O2 values were lower in the presence of DMTU. The ROS levels were balanced by increased activity of peroxidase under HNT to a greater extent in the tolerant genotype. Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) activity was inversely related to H2O2 production within a critical range in Raj 3765, indicating its modulation by H2O2 levels as no change was observed at the transcriptional level. The hormonal status showed increased ABA and decreased GA3 contents with increasing temperature. Our study elucidates the role of H2O2 and GA3 in stress tolerance of pistils of tolerant genotype where GAPC acts as a ROS sensor due to H2O2-mediated decrease in its activity
Highly lithium ion conductive, Al 2 O 3 decorated electrospun P(VDF-TrFE) membranes for lithium ion battery separators
International audienc
