1,148 research outputs found

    Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes

    Full text link
    Motivated by recent stimulative observations in halogen (X)-bridged binuclear transition-metal (M) complexes, which are referred to as MMX chains, we study solitons in a one-dimensional three-quarter-filled charge-density-wave system with both intrasite and intersite electron-lattice couplings. Two distinct ground states of MMX chains are reproduced and the soliton excitations on them are compared. In the weak-coupling region, all the solitons are degenerate to each other and are uniquely scaled by the band gap, whereas in the strong-coupling region, they behave differently deviating from the scenario in the continuum limit. The soliton masses are calculated and compared with those for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn. 71, No. 1 (2002

    The clinical and therapeutic uses of MDM2 and PSMA and their potential interaction in aggressive cancers

    Get PDF
    Prostate-specific membrane antigen (PSMA) overexpression is observed in the neovasculature of solid tumors, but not in the vasculature of normal tissues. Increased PSMA expression is positively associated with tumor stage and grade, although its function in cancer remains unclear. Mouse double minute 2 (MDM2) is a negative regulator of the p53 tumor suppressor and is reported to regulate VEGF expression and angiogenesis. Both proteins have been considered as biomarkers and therapeutic targets for advanced solid tumors. Our work and a recent microarray-based gene profiling study suggest there could be signaling interplay between MDM2 and PSMA. We herein review the mechanisms underlining the outgrowth of tumors associated with PSMA and MDM2, their potential interaction and how this may be applied to anticancer therapeutics

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Increased Circulating T Cell Reactivity to GM1 Ganglioside in Patients with Guillain-Barre Syndrome

    Get PDF
    This study was performed to determine whether increased ganglioside-specific T cell reactivity can be detected in the peripheral blood of patients with Guillain-Barre syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). T cell responsiveness to the gangliosides GM1, GM3, GD1a, GD1b, GD3, GT1b, GQ1b and sulphatide was assessed in peripheral blood mononuclear cells from untreated GBS patients (57), CIDP patients (43), patients with other peripheral neuropathies (55) and healthy control subjects (74) in a standard 6-day proliferation assay. Increased T cell reactivity to GM1 occurred in GBS patients compared to healthy controls and patients with other neuropathies. There was increased reactivity to GM3 in GBS patients compared to patients with other neuropathies but not compared to healthy controls. The frequencies of increased T cell reactivity to GM1 and GM3 in CIDP patients were intermediate between those of GBS patients and controls. We suggest that T cell reactivity to gangliosides might play a contributory role in the pathogenesis of GBS and perhaps CIDP

    Biomechanics of single cortical neurons

    Get PDF
    This study presents experimental results and computational analysis of the large strain dynamic behavior of single neurons in vitro with the objective of formulating a novel quantitative framework for the biomechanics of cortical neurons. Relying on the atomic force microscopy (AFM) technique, novel testing protocols are developed to enable the characterization of neural soma deformability over a range of indentation rates spanning three orders of magnitude, 10, 1, and 0.1 μm s[superscript −1]. Modified spherical AFM probes were utilized to compress the cell bodies of neonatal rat cortical neurons in load, unload, reload and relaxation conditions. The cell response showed marked hysteretic features, strong non-linearities, and substantial time/rate dependencies. The rheological data were complemented with geometrical measurements of cell body morphology, i.e. cross-diameter and height estimates. A constitutive model, validated by the present experiments, is proposed to quantify the mechanical behavior of cortical neurons. The model aimed to correlate empirical findings with measurable degrees of (hyper)elastic resilience and viscosity at the cell level. The proposed formulation, predicated upon previous constitutive model developments undertaken at the cortical tissue level, was implemented in a three-dimensional finite element framework. The simulated cell response was calibrated to the experimental measurements under the selected test conditions, providing a novel single cell model that could form the basis for further refinements.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (DAAD-19-02-D-002)Joint Improvised Explosive Device Defeat Organization (U.S.) (W911NF-07-1-0035)National Science Foundation (U.S.). Graduate Research FellowshipNational Institutes of Health (U.S.) (Molecular, Cell, and Tissue Biomechanics Training Grant)Ecole des ponts et chaussees (France)Computation and Systems Biology Programme of Singapore--Massachusetts Institute of Technology Allianc

    BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV

    Get PDF
    A hallmark of EBV infections is its latent phase, when all viral lytic genes are repressed. Repression results from a high nucleosome occupancy and epigenetic silencing by cellular factors such as the Polycomb repressive complex 2 (PRC2) and DNA methyltransferases that, respectively, introduce repressive histone marks and DNA methylation. The viral transcription factor BZLF1 acts as a molecular switch to induce transition from the latent to the lytic or productive phase of EBV’s life cycle. It is unknown how BZLF1 can bind to the epigenetically silenced viral DNA and whether it directly reactivates the viral genome through chromatin remodeling. We addressed these fundamental questions and found that BZLF1 binds to nucleosomal DNA motifs both in vivo and in vitro. BZLF1 co-precipitates with cellular chromatin remodeler ATPases, and the knock-down of one of them, INO80, impaired lytic reactivation and virus synthesis. In Assay for Transposase-Accessible Chromatin-seq experiments, non-accessible chromatin opens up locally when BZLF1 binds to its cognate sequence motifs in viral DNA. We conclude that BZLF1 reactivates the EBV genome by directly binding to silenced chromatin and recruiting cellular chromatin-remodeling enzymes, which implement a permissive state for lytic viral transcription. BZLF1 shares this mode of action with a limited number of cellular pioneer factors, which are instrumental in transcriptional activation, differentiation, and reprogramming in all eukaryotic cells

    MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes

    Get PDF
    Polymerase I and transcript release factor (PTRF)/Cavin is a cytoplasmic protein whose expression is obligatory for caveola formation. Using biochemistry and fluorescence resonance energy transfer–based approaches, we now show that a family of related proteins, PTRF/Cavin-1, serum deprivation response (SDR)/Cavin-2, SDR-related gene product that binds to C kinase (SRBC)/Cavin-3, and muscle-restricted coiled-coil protein (MURC)/Cavin-4, forms a multiprotein complex that associates with caveolae. This complex can constitutively assemble in the cytosol and associate with caveolin at plasma membrane caveolae. Cavin-1, but not other cavins, can induce caveola formation in a heterologous system and is required for the recruitment of the cavin complex to caveolae. The tissue-restricted expression of cavins suggests that caveolae may perform tissue-specific functions regulated by the composition of the cavin complex. Cavin-4 is expressed predominantly in muscle, and its distribution is perturbed in human muscle disease associated with Caveolin-3 dysfunction, identifying Cavin-4 as a novel muscle disease candidate caveolar protein

    Pathogenicity of highly pathogenic avian H5N1 influenza A viruses isolated from humans between 2003 and 2008 in northern Vietnam

    Get PDF
    Vietnam is one of the countries most affected by highly pathogenic H5N1 influenza A viruses. To evaluate the potential pathogenicity in mammals of H5N1 viruses isolated from humans in Vietnam, we determined the sequences of all eight genes of 22 human isolates collected between 2003 and 2008 and compared their virulence in mice. The isolates were classified into clade 1 and clade 2.3.4 and differed in pathogenicity for mice. Whilst lysine at position 627 of PB2 (PB2-627K) is a critical virulence determinant for clade 2.3.4 viruses, asparagine at position 701 of PB2 and other unknown virulence determinants appear to be involved in the high pathogenicity of clade 1 viruses, warranting further studies to determine the factors responsible for the high virulence of H5N1 viruses in mammals

    61MO Biomarker analysis of men with enzalutamide (enza)-resistant metastatic castration-resistant prostate cancer (mCRPC) treated with pembrolizumab (pembro) + enza in KEYNOTE-199

    Get PDF
    Background: In KEYNOTE-199 (NCT02787005), pembro + enza had durable antitumor activity in enza-refractory mCRPC. We evaluated the association between prespecified biomarkers and clinical outcomes. Methods: Cohorts 4 (C4; RECIST-measurable disease) and 5 (C5; nonmeasurable, bone-predominant disease) enrolled men with chemotherapy-naive mCRPC, irrespective of PD-L1 status, that progressed after initial response to enza. We evaluated TMB by whole exome sequencing (n = 64), PD-L1 combined positive score (CPS) by IHC (n = 124), and 18-gene T-cell–inflamed gene expression profile (TcellinfGEP) by NanoString (n = 51). Outcomes were DCR, PFS, PSA response, PSA progression, OS, and ORR per blinded independent review (C4 only). Significance of continuous biomarkers (CPS, TMB, GEP) was prespecified at 0.05 for 1-sided P values from logistic (ORR, DCR, PSA response) and Cox proportional hazard (PFS, OS, PSA progression) regression adjusted for ECOG PS. Results: In C4, ORR was 10% (5/48) in pts with evaluable TMB data and 12% (10/81) in pts with CPS data. In C4 and C5, 16% (10/64) and 14% (17/124) of pts with TMB and CPS data, respectively, achieved a PSA response. TMB was significantly associated with DCR (P = 0.03) and trended toward an association with PSA response (P = 0.08). TMB (AUROC [95% CI]: 0.68 [0.51-0.86]), but not CPS (0.54 [0.41-0.67]) or TcellinfGEP (0.55 [0.37-0.74]), enriched for PSA response. TMB (P = 0.04), but not CPS (P = 0.57) or TcellinfGEP (P = 0.32), was significantly associated with PSA progression. There was 1 MSI-H pt (per Promega PCR assay); this pt achieved an objective and PSA response and had PFS \u3e6 months. TMB, CPS, and TcellinfGEP were not associated with PFS or OS. There was a low prevalence of TMB ≥175 mut/exome (11%) and TcellinfGEP-high (≥−0.318; 16%). Conclusions: In this biomarker analysis of KEYNOTE-199 C4-C5, PD-L1 CPS and TcellinfGEP were not significantly associated with clinical outcome. Despite the low prevalence of TMB ≥175 mut/exome, TMB was positively associated with outcomes of pembro + enza in pts with mCRPC. The sample sizes for the exploratory analyses were small, and results should be interpreted with caution
    corecore