1,792 research outputs found
Micropalaeontology reveals the source of building materials for a defensive earthwork (English Civil War?) at Wallingford Castle, Oxfordshire
Microfossils recovered from sediment used to construct a putative English Civil War defensive bastion at Wallingford Castle, south Oxfordshire, provide a biostratigraphical age of Cretaceous (earliest Cenomanian) basal M. mantelli Biozone. The rock used in the buttress – which may have housed a gun emplacement – can thus be tracked to the Glauconitic Marl Member, base of the West Melbury Marly Chalk Formation. A supply of this rock is available on the castle site or to the east of the River Thames near Crowmarsh Gifford. Microfossils provide a unique means to provenance construction materials used at the Wallingford site. While serendipity may have been the chief cause for use of the Glauconitic Marl, when compacted, it forms a strong, almost ‘road base’-like foundation that was clearly of use for constructing defensive works. Indeed, use of the Glauconitic Marl was widespread in the area for agricultural purposes and its properties may have been well-known locally
Magnetism and half-metallicity at the O surfaces of ceramic oxides
The occurence of spin-polarization at ZrO, AlO and MgO
surfaces is proved by means of \textit{ab-initio} calculations within the
density functional theory. Large spin moments, as high as 1.56 , develop
at O-ended polar terminations, transforming the non-magnetic insulator into a
half-metal. The magnetic moments mainly reside in the surface oxygen atoms and
their origin is related to the existence of holes of well-defined spin
polarization at the valence band of the ionic oxide. The direct relation
between magnetization and local loss of donor charge makes possible to extend
the magnetization mechanism beyond surface properties
Deviations from the Schmidt-Kennicutt relations during early galaxy evolution
We utilize detailed time-varying models of the coupled evolution of stars and
the HI, H_2, and CO-bright H_2 gas phases in galaxy-sized numerical simulations
to explore the evolution of gas-rich and/or metal-poor systems, expected to be
numerous in the Early Universe. The inclusion of the CO-bright H_2 gas phase,
and the realistic rendering of star formation as an H_2-regulated process (and
the new feedback processes that this entails) allows the most realistic
tracking of strongly evolving galaxies, and much better comparison with
observations. We find that while galaxies eventually settle into states
conforming to Schmidt-Kennicutt (S-K) relations, significant and systematic
deviations of their star formation rates (SFRs) from the latter occur,
especially pronounced and prolonged for ...
...This indicates potentially serious limitations of (S-K)-type relations as
reliable sub-grid elements of star formation physics in simulations of
structure formation in the Early Universe. We anticipate that galaxies with
marked deviations from the S-K relations will be found at high redshifts as
unbiased inventories of total gas mass become possible with ALMA and the EVLA.Comment: 13 pages, 3 figures, accepted for publication in the Astrophysical
Journa
Simulating Star Formation and Feedback in Galactic Disk Models
We use a high-resolution grid-based hydrodynamics method to simulate the
multi-phase interstellar medium in a Milky Way-size quiescent disk galaxy. The
models are global and three-dimensional, and include a treatment of star
formation and feedback. We examine the formation of gravitational instabilities
and show that a form of the Toomre instability criterion can successfully
predict where star formation will occur. Two common prescriptions for star
formation are investigated. The first is based on cosmological simulations and
has a relatively low threshold for star formation, but also enforces a
comparatively low efficiency. The second only permits star formation above a
number density of 1000 cm^-3 but adopts a high efficiency. We show that both
methods can reproduce the observed slope of the relationship between star
formation and gas surface density (although at too high a rate for our adopted
parameters). A run which includes feedback from type II supernovae is
successful at driving gas out of the plane, most of which falls back onto the
disk. This feedback also substantially reduces the star formation rate.
Finally, we examine the density and pressure distribution of the ISM, and show
that there is a rough pressure equilibrium in the disk, but with a wide range
of pressures at a given location (and even wider for the case including
feedbackComment: 14 pages, 12 figures, accepted to Astrophysical Journa
A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect
Electric field, uniform within the slab, emerging due to Fermi level pinning
at its both sides is analyzed using DFT simulations of the SiC surface slabs of
different thickness. It is shown that for thicker slab the field is nonuniform
and this fact is related to the surface state charge. Using the electron
density and potential profiles it is proved that for high precision simulations
it is necessary to take into account enough number of the Si-C layers. We show
that using 12 diatomic layers leads to satisfactory results. It is also
demonstrated that the change of the opposite side slab termination, both by
different type of atoms or by their location, can be used to adjust electric
field within the slab, creating a tool for simulation of surface properties,
depending on the doping in the bulk of semiconductor. Using these simulations
it was found that, depending on the electric field, the energy of the surface
states changes in a different way than energy of the bulk states. This
criterion can be used to distinguish Shockley and Tamm surface states. The
electronic properties, i.e. energy and type of surface states of the three
clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC() are analyzed and
compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table
Investigating Atomic Details of the CaF(111) Surface with a qPlus Sensor
The (111) surface of CaF has been intensively studied with
large-amplitude frequency-modulation atomic force microscopy and atomic
contrast formation is now well understood. It has been shown that the apparent
contrast patterns obtained with a polar tip strongly depend on the tip
terminating ion and three sub-lattices of anions and cations can be imaged.
Here, we study the details of atomic contrast formation on CaF(111) with
small-amplitude force microscopy utilizing the qPlus sensor that has been shown
to provide utmost resolution at high scanning stability. Step edges resulting
from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp
structures and on flat terraces, the atomic corrugation is seen in high clarity
even for large area scans. The atomic structure is also not lost when scanning
across triple layer step edges. High resolution scans of small surface areas
yield contrast features of anion- and cation sub-lattices with unprecedented
resolution. These contrast patterns are related to previously reported
theoretical results.Comment: 18 pages, 9 Figures, presented at 7th Int Conf Noncontact AFM
Seattle, USA Sep 12-15 2004, accepted for publication in Nanotechnology,
http://www.iop.or
- …
