1,792 research outputs found

    Sleeping rough in Nottingham

    Get PDF

    Micropalaeontology reveals the source of building materials for a defensive earthwork (English Civil War?) at Wallingford Castle, Oxfordshire

    Get PDF
    Microfossils recovered from sediment used to construct a putative English Civil War defensive bastion at Wallingford Castle, south Oxfordshire, provide a biostratigraphical age of Cretaceous (earliest Cenomanian) basal M. mantelli Biozone. The rock used in the buttress – which may have housed a gun emplacement – can thus be tracked to the Glauconitic Marl Member, base of the West Melbury Marly Chalk Formation. A supply of this rock is available on the castle site or to the east of the River Thames near Crowmarsh Gifford. Microfossils provide a unique means to provenance construction materials used at the Wallingford site. While serendipity may have been the chief cause for use of the Glauconitic Marl, when compacted, it forms a strong, almost ‘road base’-like foundation that was clearly of use for constructing defensive works. Indeed, use of the Glauconitic Marl was widespread in the area for agricultural purposes and its properties may have been well-known locally

    Magnetism and half-metallicity at the O surfaces of ceramic oxides

    Get PDF
    The occurence of spin-polarization at ZrO2_{2}, Al2_{2}O3_{3} and MgO surfaces is proved by means of \textit{ab-initio} calculations within the density functional theory. Large spin moments, as high as 1.56 μB\mu_B, develop at O-ended polar terminations, transforming the non-magnetic insulator into a half-metal. The magnetic moments mainly reside in the surface oxygen atoms and their origin is related to the existence of 2p2p holes of well-defined spin polarization at the valence band of the ionic oxide. The direct relation between magnetization and local loss of donor charge makes possible to extend the magnetization mechanism beyond surface properties

    Deviations from the Schmidt-Kennicutt relations during early galaxy evolution

    Full text link
    We utilize detailed time-varying models of the coupled evolution of stars and the HI, H_2, and CO-bright H_2 gas phases in galaxy-sized numerical simulations to explore the evolution of gas-rich and/or metal-poor systems, expected to be numerous in the Early Universe. The inclusion of the CO-bright H_2 gas phase, and the realistic rendering of star formation as an H_2-regulated process (and the new feedback processes that this entails) allows the most realistic tracking of strongly evolving galaxies, and much better comparison with observations. We find that while galaxies eventually settle into states conforming to Schmidt-Kennicutt (S-K) relations, significant and systematic deviations of their star formation rates (SFRs) from the latter occur, especially pronounced and prolonged for ... ...This indicates potentially serious limitations of (S-K)-type relations as reliable sub-grid elements of star formation physics in simulations of structure formation in the Early Universe. We anticipate that galaxies with marked deviations from the S-K relations will be found at high redshifts as unbiased inventories of total gas mass become possible with ALMA and the EVLA.Comment: 13 pages, 3 figures, accepted for publication in the Astrophysical Journa

    Simulating Star Formation and Feedback in Galactic Disk Models

    Full text link
    We use a high-resolution grid-based hydrodynamics method to simulate the multi-phase interstellar medium in a Milky Way-size quiescent disk galaxy. The models are global and three-dimensional, and include a treatment of star formation and feedback. We examine the formation of gravitational instabilities and show that a form of the Toomre instability criterion can successfully predict where star formation will occur. Two common prescriptions for star formation are investigated. The first is based on cosmological simulations and has a relatively low threshold for star formation, but also enforces a comparatively low efficiency. The second only permits star formation above a number density of 1000 cm^-3 but adopts a high efficiency. We show that both methods can reproduce the observed slope of the relationship between star formation and gas surface density (although at too high a rate for our adopted parameters). A run which includes feedback from type II supernovae is successful at driving gas out of the plane, most of which falls back onto the disk. This feedback also substantially reduces the star formation rate. Finally, we examine the density and pressure distribution of the ISM, and show that there is a rough pressure equilibrium in the disk, but with a wide range of pressures at a given location (and even wider for the case including feedbackComment: 14 pages, 12 figures, accepted to Astrophysical Journa

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Investigating Atomic Details of the CaF2_2(111) Surface with a qPlus Sensor

    Get PDF
    The (111) surface of CaF2_2 has been intensively studied with large-amplitude frequency-modulation atomic force microscopy and atomic contrast formation is now well understood. It has been shown that the apparent contrast patterns obtained with a polar tip strongly depend on the tip terminating ion and three sub-lattices of anions and cations can be imaged. Here, we study the details of atomic contrast formation on CaF2_2(111) with small-amplitude force microscopy utilizing the qPlus sensor that has been shown to provide utmost resolution at high scanning stability. Step edges resulting from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp structures and on flat terraces, the atomic corrugation is seen in high clarity even for large area scans. The atomic structure is also not lost when scanning across triple layer step edges. High resolution scans of small surface areas yield contrast features of anion- and cation sub-lattices with unprecedented resolution. These contrast patterns are related to previously reported theoretical results.Comment: 18 pages, 9 Figures, presented at 7th Int Conf Noncontact AFM Seattle, USA Sep 12-15 2004, accepted for publication in Nanotechnology, http://www.iop.or
    corecore