2,329 research outputs found
Coreference detection of low quality objects
The problem of record linkage is a widely studied problem that aims to identify coreferent (i.e. duplicate) data in a structured data source. As indicated by Winkler, a solution to the record linkage problem is only possible if the error rate is sufficiently low. In other words, in order to succesfully deduplicate a database, the objects in the database must be of sufficient quality. However, this assumption is not always feasible. In this paper, it is investigated how merging of low quality objects into one high quality object can improve the process of record linkage. This general idea is illustrated in the context of strings comparison, where strings of low quality (i.e. with a high typographical error rate) are merged into a string of high quality by using an n-dimensional Levenshtein distance matrix and compute the optimal alignment between the dirty strings. Results are presented and possible refinements are proposed
Magnetic properties and giant magnetoresistance in melt-spun CoCu alloys
Magnetic, structural, and transport properties of as quenched and annealed Co10Cu90 samples have been investigated using x¿ray diffraction and a SQUID magnetometer. The largest value of MR change was observed for the as¿quenched sample annealed at 450°C for 30 min. The magnetic and transport properties closely correlate with the microstructure, mainly with Co magnetic particle size and its distribution. For thermal annealing the as quenched samples below 600°C, the Co particle diameters increase from 4.0 to 6.0 nm with a magnetoresistance (MR) drop from 33.0% to 5.0% at 10 K. Comparison with the theory indicates that the interfacial electron spin¿dependent scattering mechanism correlates with GMR for Co particle diameters up to about 6.0 nm
The role of temperature in the magnetic irreversibility of type-I Pb superconductors
Evidence of how temperature takes part in the magnetic irreversibility in the
intermediate state of a cylinder and various disks of pure type-I
superconducting lead is presented. Isothermal measurements of first
magnetization curves and magnetic hysteresis cycles are analyzed in a reduced
representation that defines an equilibrium state for flux penetration in all
the samples and reveals that flux expulsion depends on temperature in the disks
but not in the cylinder. The magnetic field at which irreversibility sets in
along the descending branch of the hysteresis cycle and the remnant
magnetization at zero field are found to decrease with temperature in the
disks. The contributions to irreversibility of the geometrical barrier and the
energy minima associated to stress defects that act as pinning centers on
normal-superconductor interfaces are discussed. The differences observed among
the disks are ascribed to the diverse nature of the stress defects in each
sample. The pinning barriers are suggested to decrease with the magnetic field
to account for these results
Flux creep in Bi2Sr2CaCu2O8(sub +x) single crystals
The results of a magnetic study on a Bi2Sr2CaCu2O(8+x) single crystal are reported. Low field susceptibility (dc and ac), magnetization cycles and time dependent measurements were performed. With increasing the temperature the irreversible regime of the magnetization cycles is rapidly restricted to low fields, showing that the critical current J(sub c) becomes strongly field dependent well below T(sub c). At 2.4 K the critical current in zero field, determined from the remanent magnetization by using the Bean formula for the critical state, is J(sub c) = 2 10(exp 5) A/sq cm. The temperature dependence of J(sub c) is satisfactorily described by the phenomenological law J(sub c) = J(sub c) (0) (1 - T/T(sub c) (sup n), with n = 8. The time decay of the zero field cooled magnetization and of the remanent magnetization was studied at different temperatures for different magnetic fields. The time decay was found to be logarithmic in both cases, at least at low temperatures. At T = 4.2 K for a field of 10 kOe applied parallel to the c axis, the average pinning energy, determined by using the flux creep model, is U(sub o) = 0.010 eV
Non-monotonic field-dependence of the ZFC magnetization peak in some systems of magnetic nanoparticles
We have performed magnetic measurements on a diluted system of gamma-Fe2O3
nanoparticles (~7nm), and on a ferritin sample. In both cases, the ZFC-peak
presents a non-monotonic field dependence, as has already been reported in some
experiments,and discussed as a possible evidence of resonant tunneling. Within
simple assumptions, we derive expressions for the magnetization obtained in the
usual ZFC, FC, TRM procedures. We point out that the ZFC-peak position is
extremely sensitive to the width of the particle size distribution, and give
some numerical estimates of this effect. We propose to combine the FC
magnetization with a modified TRM measurement, a procedure which allows a more
direct access to the barrier distribution in a field. The typical barrier
values which are obtained with this method show a monotonic decrease for
increasing fields, as expected from the simple effect of anisotropy barrier
lowering, in contrast with the ZFC results. From our measurements on
gamma-Fe2O3 particles, we show that the width of the effective barrier
distribution is slightly increasing with the field, an effect which is
sufficient for causing the observed initial increase of the ZFC-peak
temperatures.Comment: LaTeX file 19 pages, 9 postscript figures. To appear in Phys. Rev. B
(tentative schedule: Dec.97
Publicaciones médicas: ¿ciencia o negocio?
En los últimos años ha aumentado enormemente el número de revistas científicas, de tal manera que hoy día es imposible leer ni siquiera el 1% de lo que se publica sobre nuestra especialidad o sobre los campos que nos interesen. La proliferación de revistas científicas en general y en el campo de la Medicina en especial puede ser debido a muchas razones. Entre ellas destacan, en nuestra opinión, la aparición de Internet y el cambio de la razón de ser de las publicaciones científicas. Comentaremos en esta revisión las razones que han llevado a este hecho.Sociedad Canaria de Osteoporosis (2016)
Intermittent turbulence, noisy fluctuations and wavy structures in the Venusian magnetosheath and wake
Recent research has shown that distinct physical regions in the Venusian
induced magnetosphere are recognizable from the variations of strength of the
magnetic field and its wave/fluctuation activity. In this paper the statistical
properties of magnetic fluctuations are investigated in the Venusian
magnetosheath and wake regions. The main goal is to identify the characteristic
scaling features of fluctuations along Venus Express (VEX) trajectory and to
understand the specific circumstances of the occurrence of different types of
scalings. For the latter task we also use the results of measurements from the
previous missions to Venus. Our main result is that the changing character of
physical interactions between the solar wind and the planetary obstacle is
leading to different types of spectral scaling in the near-Venusian space.
Noisy fluctuations are observed in the magnetosheath, wavy structures near the
terminator and in the nightside near-planet wake. Multi-scale turbulence is
observed at the magnetosheath boundary layer and near the quasi-parallel bow
shock. Magnetosheath boundary layer turbulence is associated with an average
magnetic field which is nearly aligned with the Sun-Venus line. Noisy magnetic
fluctuations are well described with the Gaussian statistics. Both
magnetosheath boundary layer and near shock turbulence statistics exhibit
non-Gaussian features and intermittency over small spatio-temporal scales. The
occurrence of turbulence near magnetosheath boundaries can be responsible for
the local heating of plasma observed by previous missions
1958 Ohio Farm Income: Estimated Cash Receipts From Farm Marketing and Government Payments, by Counties and Major Commodity Groups
- …
