1,265 research outputs found

    A New Superintegrable Hamiltonian

    Full text link
    We identify a new superintegrable Hamiltonian in 3 degrees of freedom, obtained as a reduction of pure Keplerian motion in 6 dimensions. The new Hamiltonian is a generalization of the Keplerian one, and has the familiar 1/r potential with three barrier terms preventing the particle crossing the principal planes. In 3 degrees of freedom, there are 5 functionally independent integrals of motion, and all bound, classical trajectories are closed and strictly periodic. The generalisation of the Laplace-Runge-Lenz vector is identified and shown to provide functionally independent isolating integrals. They are quartic in the momenta and do not arise from separability of the Hamilton-Jacobi equation. A formulation of the system in action-angle variables is presented.Comment: 11 pages, 4 figures, submitted to The Journal of Mathematical Physic

    Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory

    Get PDF
    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Stäckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Stäckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems

    Integrable and superintegrable systems with spin

    Full text link
    A system of two particles with spin s=0 and s=1/2 respectively, moving in a plane is considered. It is shown that such a system with a nontrivial spin-orbit interaction can allow an 8 dimensional Lie algebra of first-order integrals of motion. The Pauli equation is solved in this superintegrable case and reduced to a system of ordinary differential equations when only one first-order integral exists.Comment: 12 page

    Exact Solvability of Superintegrable Systems

    Get PDF
    It is shown that all four superintegrable quantum systems on the Euclidean plane possess the same underlying hidden algebra sl(3)sl(3). The gauge-rotated Hamiltonians, as well as their integrals of motion, once rewritten in appropriate coordinates, preserve a flag of polynomials. This flag corresponds to highest-weight finite-dimensional representations of the sl(3)sl(3)-algebra, realized by first order differential operators.Comment: 14 pages, AMS LaTe

    Families of classical subgroup separable superintegrable systems

    Full text link
    We describe a method for determining a complete set of integrals for a classical Hamiltonian that separates in orthogonal subgroup coordinates. As examples, we use it to determine complete sets of integrals, polynomial in the momenta, for some families of generalized oscillator and Kepler-Coulomb systems, hence demonstrating their superintegrability. The latter generalizes recent results of Verrier and Evans, and Rodriguez, Tempesta and Winternitz. Another example is given of a superintegrable system on a non-conformally flat space.Comment: 9 page

    Third-order superintegrable systems separable in parabolic coordinates

    Full text link
    In this paper, we investigate superintegrable systems which separate in parabolic coordinates and admit a third-order integral of motion. We give the corresponding determining equations and show that all such systems are multi-separable and so admit two second-order integrals. The third-order integral is their Lie or Poisson commutator. We discuss how this situation is different from the Cartesian and polar cases where new potentials were discovered which are not multi-separable and which are expressed in terms of Painlev\'e transcendents or elliptic functions

    Quantum models related to fouled Hamiltonians of the harmonic oscillator

    Get PDF
    We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator which provide, at the classical level, the same equation of motion as the conventional Hamiltonian. These Hamiltonians, say K1K_{1} and K2K_{2}, result to be explicitly time-dependent and can be expressed as a formal rotation of two cubic polynomial functions, H1H_{1} and H2H_{2}, of the canonical variables (q,p). We investigate the role of these fouled Hamiltonians at the quantum level. Adopting a canonical quantization procedure, we construct some quantum models and analyze the related eigenvalue equations. One of these models is described by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a discrete spectrum on the real line. A self-adjoint extension is fixed by choosing the spectral parameter ϵ\epsilon of the associated eigenvalue equation equal to zero. The spectral problem is discussed in the context of three different representations. For ϵ=0\epsilon =0, the eigenvalue equation is exactly solved in all these representations, in which square-integrable solutions are explicity found. A set of constants of motion corresponding to these quantum models is also obtained. Furthermore, the algebraic structure underlying the quantum models is explored. This turns out to be a nonlinear (quadratic) algebra, which could be applied for the determination of approximate solutions to the eigenvalue equations.Comment: 24 pages, no figures, accepted for publication on JM
    corecore