302 research outputs found
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems
Two-Loop Polarization Contributions to Radiative-Recoil Corrections to Hyperfine Splitting in Muonium
We calculate radiative-recoil corrections of order
to hyperfine splitting in muonium generated by the
diagrams with electron and muon polarization loops. These corrections are
enhanced by the large logarithm of the electron-muon mass ratio. The leading
logarithm cubed and logarithm squared contributions were obtained a long time
ago. The single-logarithmic and nonlogarithmic contributions calculated here
improve the theory of hyperfine splitting, and affect the value of the
electron-muon mass ratio extracted from the experimental data on the muonium
hyperfine splitting.Comment: 15 pages, 11 figure
Recommended from our members
Challenges in quantifying changes in the global water cycle
Human influences have likely already impacted the large-scale water cycle but natural variability and observational uncertainty are substantial. It is essential to maintain and improve observational capabilities to better characterize changes. Understanding observed changes to the global water cycle is key to predicting future climate changes and their impacts. While many datasets document crucial variables such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for determining long-term changes. In situ networks provide long time-series over land but are sparse in many regions, particularly the tropics. Satellite and reanalysis datasets provide global coverage, but their long-term stability is lacking. However, comparisons of changes among related variables can give insights into the robustness of observed changes. For example, ocean salinity, interpreted with an understanding of ocean processes, can help cross-validate precipitation. Observational evidence for human influences on the water cycle is emerging, but uncertainties resulting from internal variability and observational errors are too large to determine whether the observed and simulated changes are consistent. Improvements to the in situ and satellite observing networks that monitor the changing water cycle are required, yet continued data coverage is threatened by funding reductions. Uncertainty both in the role of anthropogenic aerosols, and due to large climate variability presently limits confidence in attribution of observed changes
The use of paleoclimate simulations to refine the environmental and chronological context of archaeological/paleontological sites
This study illustrates the strong potential of combining paleoenvironmental reconstructions and paleoclimate modeling to refine the paleoenvironmental and chronological context of archaeologicaland paleontological sites. We focus on the El Harhoura 2 cave (EH2), an archeological site located on the North-Atlantic coast of Morocco that covers a period from the Late Pleistocene to the mid-Holocene. On several stratigraphic layers, inconsistencies are observed between species- and isotope-based inferences used to reconstruct paleoenvironmental conditions. The stratigraphy of EH2 also shows chronological inconsistencies on older layers between age estimated by Optical Stimulated Luminescence (OSL) and Combination of Uranium Series and Electron Spin Resonance methods (combined US-ESR). We performed paleoclimate simulations to infer the global paleoclimate variations over the EH2 sequence in the area, and we conducted a consistency approach between paleoclimatereconstruction estimated from simulations and available from EH2 paleoenvironmental inferences. Our main conclusion show that the climate sequence based on combined US-ESR ages is more consistent with paleoenvironmental inferences than the climate sequence based on OSL ages. We also evidence that isotope-based inferences are more congruent with the paleoclimate sequence than species-based inferences. These results highlight the difference in scale between the information provided by each ofthese paleoenvironmental proxies. Our approach is transferable to other sites due to the increase number of available paleoclimate simulations.1 Introduction 2 Material and methods 2.1 El Harhoura 2 cave 2.1.1 Presentation of the site 2.1.2 Chronostratigraphy and dating hypotheses 2.1.3 Paleoenvironmental variables 2.2 Paleoclimate reconstruction 2.2.1 Climate model 2.2.2 Paleoclimate simulations 2.2.3 Sea-surface boundary conditions 2.2.4 A subset of key paleoclimate variables 2.3 Consistency analyses 3 Results 3.1. Simulated climate changes 3.2 Consistency between paleoclimate simulations and paleoenvironmental inferences 3.2.1 Association of paleoclimate simulations and stratigraphic layers 3.2.2 Consistency analyses 4 Discussion 4.1 Paleoclimate variation and underlying forcings 4.2 Paleoclimate simulations and chronostratigraphy 4.3 Paleoclimate simulations and paleoenvironmental inferences 5 Conclusion
The use of paleoclimatic simulations to refine the environmental and chronological context of archaeological/paleontological sites
To reconstruct the paleoenvironmental and chronological context of archaeological/paleontological sites is a key step to understand the evolutionary history of past organisms. Commonly used method to infer paleoenvironments rely on varied proxies such as faunal assemblages and isotopes. However, those proxies often show some inconsistencies. Regarding estimated ages of stratigraphic layers, they can vary depending on the dating method used. In this paper, we tested the potential of paleoclimate simulations to address this issue and contribute to the description of the environmental and chronological context of archaeological/paleontological sites. We produced a set of paleoclimate simulations corresponding to the stratigraphy of a Late-Pleistocene Holocene site, El Harhoura 2 (Morocco), and compared the climatic sequence described by these simulations to environmental inferences made from isotopes and faunal assemblages. Our results showed that in the studied site combined US-ESR ages were much more congruent with paleoenvironmental inferences than OSL ages. In addition, climatic variations were found to be more consistent with isotopic studies than faunal assemblages, allowing us to discuss unresolved discrepancies to date. This study illustrates the strong potential of our approach to refine the paleoenvironmental and chronological context of archaeological and paleontological sites.1 Introduction 2 Material and methods 2.1 El Harhoura 2 cave 2.2 Paleoclimate simulations 2.2.1 Pre-existing ensemble of simulations 2.2.2 Model 2.2.3 Sea-surface boundary conditions 2.3 Climate variations through EH2 sequence 3 Results 3.1 Paleoclimate simulations 3.2 Climate variations through EH2 sequence 4 Discussion 5 Conclusio
Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation
Possible changes in Atlantic meridional overturning circulation (AMOC) provide a key source of uncertainty regarding future climate change. Maps of temperature trends over the twentieth century show a conspicuous region of cooling in the northern Atlantic. Here we present multiple lines of evidence suggesting that this cooling may be due to a reduction in the AMOC over the twentieth century and particularly after 1970. Since 1990 the AMOC seems to have partly recovered. This time evolution is consistently suggested by an AMOC index based on sea surface temperatures, by the hemispheric temperature difference, by coral-based proxies and by oceanic measurements. We discuss a possible contribution of the melting of the Greenland Ice Sheet to the slowdown. Using a multi-proxy temperature reconstruction for the AMOC index suggests that the AMOC weakness after 1975 is an unprecedented event in the past millennium (p > 0.99). Further melting of Greenland in the coming decades could contribute to further weakening of the AMOC
The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes
The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La Niña since 1917. However, inconsistencies exist between El Niño/La Niña (ENSO) cycles and precipitation in the historical record; for example, significant ENSO-precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El Niño, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999-2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought
High resolution simulation of the South Asian monsoon using a variable resolution global climate model
International audienceThis study examines the feasibility of using a variable resolution global general circulation model (GCM), with telescopic zooming and enhanced resolution (~35 km) over South Asia, to better understand regional aspects of the South Asian monsoon rainfall distribution and the interactions between monsoon circulation and precipitation. For this purpose, two sets of ten member realizations are produced with and without zooming using the LMDZ (Laboratoire Meteorologie Dynamique and Z stands for zoom) GCM. The simulations without zoom correspond to a uniform 1° × 1° grid with the same total number of grid points as in the zoom version. So the grid of the zoomed simulations is finer inside the region of interest but coarser outside. The use of these finer and coarser resolution ensemble members allows us to examine the impact of resolution on the overall quality of the simulated regional monsoon fields. It is found that the monsoon simulation with high-resolution zooming greatly improves the representation of the southwesterly monsoon flow and the heavy precipitation along the narrow orography of the Western Ghats, the northeastern mountain slopes and northern Bay of Bengal (BOB). A realistic Monsoon Trough (MT) is also noticed in the zoomed simulation, together with remarkable improvements in representing the associated precipitation and circulation features, as well as the large-scale organization of meso-scale convective systems over the MT region. Additionally, a more reasonable simulation of the monsoon synoptic disturbances (lows and disturbances) along the MT is noted in the high-resolution zoomed simulation. On the other hand, the no-zoom version has limitations in capturing the depressions and their movement, so that the MT zone is relatively dry in this case. Overall, the results from this work demonstrate the usefulness of the high-resolution variable resolution LMDZ model in realistically capturing the interactions among the monsoon large-scale dynamics, the synoptic systems and the meso-scale convective systems, which are essential elements of the South Asian monsoon system
Climate fluctuations of tropical coupled system: The role of ocean dynamics
The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate
- …
