7,261 research outputs found

    Photonic measurements of the longitudinal expansion dynamics in Heavy-Ion collisions

    Full text link
    Due to the smallness of the electromagnetic coupling, photons escape from the hot and dense matter created in an heavy-ion collision at all times, in contrast to hadrons which are predominantly emitted in the final freeze-out phase of the evolving system. Thus, the thermal photon yield carries an imprint from the early evolution. We suggest how this fact can be used to gain information about where between the two limiting cases of Bjorken (boost-invariant expansion) and Landau (complete initial stopping and re-expansion) hydrodynamics the actual evolution can be found. We argue that both the rapidity dependence of the photon yield and photonic HBT radii are capable of answering this question.Comment: 10 pages, 3 figure

    Double barred galaxies at intermediate redshifts: A feasibility study

    Get PDF
    Despite the increasing number of studies of barred galaxies at intermediate and high redshifts, double-barred (S2B) systems have only been identified in the nearby (z<0.04) universe thus far. In this feasibility study we demonstrate that the detection and analysis of S2Bs is possible at intermediate redshifts (0.1 < z < 0.5) with the exquisite resolution of the Hubble Space Telescope Advanced Camera for Surveys (HST/ACS). We identify barred galaxies in the HST/ACS data of the Great Observatories Origins Deep Survey (GOODS) using a novel method. The radial profile of the Gini coefficient -- a model-independent structure parameter -- is able to detect bars in early-type galaxies that are large enough that they might host an inner bar of sufficient angular size. Using this method and subsequent examination with unsharp masks and ellipse fits we identified the two most distant S2Bs currently known (at redshifts z=0.103 and z=0.148). We investigate the underlying stellar populations of these two galaxies through a detailed colour analysis, in order to demonstrate the analysis that could be performed on a future sample of intermediate-redshift S2Bs. We also identify two S2Bs and five S2B candidates in the HST/ACS data of the Cosmic Evolution Survey (COSMOS). Our detections of distant S2Bs show that deep surveys like GOODS and COSMOS have the potential to push the limit for S2B detection and analysis out by a factor of ten in redshift and lookback time (z=0.5, t=5Gyr) compared to the previously known S2Bs. This in turn would provide new insight into the formation of these objects.Comment: 9 pages + 10 figures. Accepted for publication in MNRAS. Main change from version 1 is an extension of the introduction/motivation and discussion section. A full resolution version including colour figures is available at http://www.astro.unibas.ch/~tlisker/papers/lisker2006_s2b.pd

    Active vision-based localization for robots in a home-tour scenario

    Get PDF
    Self-Localization is a crucial task for mobile robots. It is not only a requirement for auto navigation but also provides contextual information to support human robot interaction (HRI). In this paper we present an active vision-based localization method for integration in a complex robot system to work in human interaction scenarios (e.g. home-tour) in a real world apartment. The holistic features used are robust to illumination and structural changes in the scene. The system uses only a single pan-tilt camera shared between different vision applications running in parallel to reduce the number of sensors. Additional information from other modalities (like laser scanners) can be used, profiting of an integration into an existing system. The camera view can be actively adapted and the evaluation showed that different rooms can be discerned

    Consequences of Mechanical and Radiative Feedback from Black Holes in Disc Galaxy Mergers

    Full text link
    We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. Using smoothed particle hydrodynamics simulation code (GADGET-3) we compare three models with different AGN feedback models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad line quasars which show winds with initial velocities of vwv_w \ge 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity 1000\sim 1000 km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of \sim 20 higher than in the thermal feedback case. All merger remnants with momentum-based AGN feedback with vw10,000v_w \sim 10,000 km/s and ϵw=2×103\epsilon_w=2 \times 10^{-3}, independent of their progenitor mass-ratios, reproduce the observed relations between stellar velocity dispersion and black hole mass (MbhσM_{\rm bh} - \sigma) as well as X-ray luminosity (LXσL_X - \sigma) with 1037.510^{37.5} erg/s LX(0.38 keV)1039.2\lesssim L_X (0.3-8~{\rm keV}) \lesssim 10^{39.2} erg/s for velocity dispersions in the range of 120 km/s σ\lesssim \sigma \lesssim 190 km/s. In addition, the mechanical feedback produces a much greater AGN variability. We also show that gas is more rapidly and impulsively stripped from the galactic centres driving a moderate increase in galaxy size and decrease in central density with the mechanical AGN feedback model.Comment: 16 pages, 10 figures, resubmitted to MNRA

    The Growth in Size and Mass of Cluster Galaxies since z=2

    Full text link
    We study the formation and evolution of Brightest Cluster Galaxies starting from a z=2z=2 population of quiescent ellipticals and following them to z=0z=0. To this end, we use a suite of nine high-resolution dark matter-only simulations of galaxy clusters in a Λ\LambdaCDM universe. We develop a scheme in which simulation particles are weighted to generate realistic and dynamically stable stellar density profiles at z=2z=2. Our initial conditions assign a stellar mass to every identified dark halo as expected from abundance matching; assuming there exists a one-to-one relation between the visible properties of galaxies and their host haloes. We set the sizes of the luminous components according to the observed relations for z2z\sim2 massive quiescent galaxies. We study the evolution of the mass-size relation, the fate of satellite galaxies and the mass aggregation of the cluster central. From z=2z=2, these galaxies grow on average in size by a factor 5 to 10 of and in mass by 2 to 3. The stellar mass growth rate of the simulated BCGs in our sample is of 1.9 in the range 0.3<z<1.00.3<z<1.0 consistent with observations, and of 1.5 in the range 0.0<z<0.30.0<z<0.3. Furthermore the satellite galaxies evolve to the present day mass-size relation by z=0z=0. Assuming passively evolving stellar populations, we present surface brightness profiles for our cluster centrals which resemble those observed for the cDs in similar mass clusters both at z=0z=0 and at z=1z=1. This demonstrates that the Λ\LambdaCDM cosmology does indeed predict minor and major mergers to occur in galaxy clusters with the frequency and mass ratio distribution required to explain the observed growth in size of passive galaxies since z=2z=2. Our experiment shows that Brightest Cluster Galaxies can form through dissipationless mergers of quiescent massive z=2z=2 galaxies, without substantial additional star formation.Comment: submitted to MNRAS, 10 pages, 8 figures, 2 table

    The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies

    Full text link
    We use cosmological hydrodynamical simulations to investigate the role of feedback from accreting black holes on the evolution of sizes, compactness, stellar core density and specific star-formation of massive galaxies with stellar masses of Mstar>1010.9M M_{star} > 10^{10.9} M_{\odot}. We perform two sets of cosmological zoom-in simulations of 30 halos to z=0: (1) without black holes and Active Galactic Nucleus (AGN) feedback and (2) with AGN feedback arising from winds and X-ray radiation. We find that AGN feedback can alter the stellar density distribution, reduce the core density within the central 1 kpc by 0.3 dex from z=1, and enhance the size growth of massive galaxies. We also find that galaxies simulated with AGN feedback evolve along similar tracks to those characterized by observations in specific star formation versus compactness. We confirm that AGN feedback plays an important role in transforming galaxies from blue compact galaxies into red extended galaxies in two ways: (1) it effectively quenches the star formation, transforming blue compact galaxies into compact quiescent galaxies and (2) it also removes and prevents new accretion of cold gas, shutting down in-situ star formation and causing subsequent mergers to be gas-poor or mixed. Gas poor minor mergers then build up an extended stellar envelope. AGN feedback also puffs up the central region through the fast AGN driven winds as well as the slow expulsion of gas while the black hole is quiescent. Without AGN feedback, large amounts of gas accumulate in the central region, triggering star formation and leading to overly massive blue galaxies with dense stellar cores.Comment: 13 pages, 7 figures, Accepted for publication in Ap
    corecore