1,713 research outputs found
The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius
In the current LambdaCDM cosmological scenario, N-body simulations provide us
with a Universal mass profile, and consequently a Universal equilibrium
circular velocity of the virialized objects, as galaxies. In this paper we
obtain, by combining kinematical data of their inner regions with global
observational properties, the Universal Rotation Curve (URC) of disk galaxies
and the corresponding mass distribution out to their virial radius. This curve
extends the results of Paper I, concerning the inner luminous regions of Sb-Im
spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the
figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo
The low dimensional dynamical system approach in General Relativity: an example
In this paper we explore one of the most important features of the Galerkin
method, which is to achieve high accuracy with a relatively modest
computational effort, in the dynamics of Robinson-Trautman spacetimes.Comment: 7 pages, 5 figure
Site selection for dendroclimatological studies with Bertholletia excelsa.
Edição dos abstracts do 24º IUFRO World Congress, 2014, Salt Lake City. Sustaining forests, sustaining people: the role of research
Two tricritical lines from a Ginzburg-Landau expansion: application to the LOFF phase
We study the behavior of the two plane waves configuration in the LOFF phase
close to T=0. The study is performed by using a Landau-Ginzburg expansion up to
the eighth order in the gap. The general study of the corresponding grand
potential shows, under the assumption that the eighth term in the expansion is
strictly positive, the existence of two tricritical lines. This allows to
understand the existence of a second tricritical point for two antipodal plane
waves in the LOFF phase and justifies why the transition becomes second order
at zero temperature. The general analysis done in this paper can be applied to
other cases.Comment: LaTex file, 15 pages, 6 figure
Scaling Relations for Collision-less Dark Matter Turbulence
Many scaling relations are observed for self-gravitating systems in the
universe. We explore the consistent understanding of them from a simple
principle based on the proposal that the collision-less dark matter fluid terns
into a turbulent state, i.e. dark turbulence, after crossing the caustic
surface in the non-linear stage. The dark turbulence will not eddy dominant
reflecting the collision-less property. After deriving Kolmogorov scaling laws
from Navier-Stokes equation by the method similar to the one for Smoluchowski
coagulation equation, we apply this to several observations such as the
scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields,
and mass-angular momentum relation, power spectrum of density fluctuations.
They all point the concordant value for the constant energy flow per mass: , which may be understood as the speed of the hierarchical
coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure
Observational Manifestations of the First Protogalaxies in the 21 cm Line
The absorption properties of the first low-mass protogalaxies (mini-halos)
forming at high redshifts in the 21-cm line of atomic hydrogen are considered.
The absorption properties of these protogalaxies are shown to depend strongly
on both their mass and evolutionary status. The optical depths in the line
reach 0.1-0.2 for small impact parameters of the line of sight. When a
protogalaxy being compressed, the influence of gas accretion can be seen
manifested in a non-monotonic frequency dependence of the optical depth. The
absorption characteristics in the 21-cm line are determined by the thermal and
dynamical evolution of the gas in protogalaxies. Since the theoretical line
width in the observer's reference frame is 1-6 kHz and the expected separation
between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved
using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure
The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes
We examine the efficiency of gravitational bremsstrahlung production in the
process of head-on collision of two boosted Schwarzschild black holes. We
constructed initial data for the characteristic initial value problem in
Robinson-Trautman spacetimes, that represent two instantaneously stationary
Schwarzschild black holes in motion towards each other with the same velocity.
The Robinson-Trautman equation was integrated for these initial data using a
numerical code based on the Galerkin method. The final resulting configuration
is a boosted black hole with Bondi mass greater than the sum of the individual
mass of each initial black hole. Two relevant aspects of the process are
presented. The first relates the efficiency of the energy extraction
by gravitational wave emission to the mass of the final black hole. This
relation is fitted by a distribution function of non-extensive thermostatistics
with entropic parameter ; the result extends and validates
analysis based on the linearized theory of gravitational wave emission. The
second is a typical bremsstrahlung angular pattern in the early period of
emission at the wave zone, a consequence of the deceleration of the black holes
as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008
- …
