1,713 research outputs found

    The Universal Rotation Curve of Spiral Galaxies. II The Dark Matter Distribution out to the Virial Radius

    Get PDF
    In the current LambdaCDM cosmological scenario, N-body simulations provide us with a Universal mass profile, and consequently a Universal equilibrium circular velocity of the virialized objects, as galaxies. In this paper we obtain, by combining kinematical data of their inner regions with global observational properties, the Universal Rotation Curve (URC) of disk galaxies and the corresponding mass distribution out to their virial radius. This curve extends the results of Paper I, concerning the inner luminous regions of Sb-Im spirals, out to the edge of the galaxy halos.Comment: In press on MNRAS. 10 pages, 8 figures. The Mathematica code for the figures is available at: http://www.novicosmo.org/salucci.asp Corrected typo

    The low dimensional dynamical system approach in General Relativity: an example

    Get PDF
    In this paper we explore one of the most important features of the Galerkin method, which is to achieve high accuracy with a relatively modest computational effort, in the dynamics of Robinson-Trautman spacetimes.Comment: 7 pages, 5 figure

    Site selection for dendroclimatological studies with Bertholletia excelsa.

    Get PDF
    Edição dos abstracts do 24º IUFRO World Congress, 2014, Salt Lake City. Sustaining forests, sustaining people: the role of research

    Two tricritical lines from a Ginzburg-Landau expansion: application to the LOFF phase

    Full text link
    We study the behavior of the two plane waves configuration in the LOFF phase close to T=0. The study is performed by using a Landau-Ginzburg expansion up to the eighth order in the gap. The general study of the corresponding grand potential shows, under the assumption that the eighth term in the expansion is strictly positive, the existence of two tricritical lines. This allows to understand the existence of a second tricritical point for two antipodal plane waves in the LOFF phase and justifies why the transition becomes second order at zero temperature. The general analysis done in this paper can be applied to other cases.Comment: LaTex file, 15 pages, 6 figure

    Scaling Relations for Collision-less Dark Matter Turbulence

    Full text link
    Many scaling relations are observed for self-gravitating systems in the universe. We explore the consistent understanding of them from a simple principle based on the proposal that the collision-less dark matter fluid terns into a turbulent state, i.e. dark turbulence, after crossing the caustic surface in the non-linear stage. The dark turbulence will not eddy dominant reflecting the collision-less property. After deriving Kolmogorov scaling laws from Navier-Stokes equation by the method similar to the one for Smoluchowski coagulation equation, we apply this to several observations such as the scale-dependent velocity dispersion, mass-luminosity ratio, magnetic fields, and mass-angular momentum relation, power spectrum of density fluctuations. They all point the concordant value for the constant energy flow per mass: 0.3cm2/sec30.3 cm^2/sec^3, which may be understood as the speed of the hierarchical coalescence process in the cosmic structure formation.Comment: 26 pages, 6 figure

    Observational Manifestations of the First Protogalaxies in the 21 cm Line

    Full text link
    The absorption properties of the first low-mass protogalaxies (mini-halos) forming at high redshifts in the 21-cm line of atomic hydrogen are considered. The absorption properties of these protogalaxies are shown to depend strongly on both their mass and evolutionary status. The optical depths in the line reach \sim0.1-0.2 for small impact parameters of the line of sight. When a protogalaxy being compressed, the influence of gas accretion can be seen manifested in a non-monotonic frequency dependence of the optical depth. The absorption characteristics in the 21-cm line are determined by the thermal and dynamical evolution of the gas in protogalaxies. Since the theoretical line width in the observer's reference frame is 1-6 kHz and the expected separation between lines 8.4 kHz, the lines from low mass protogalaxies can be resolved using ongoing and future low frequency interferometers.Comment: 12 pages, 5 figure

    The Efficiency of Gravitational Bremsstrahlung Production in the Collision of Two Schwarzschild Black Holes

    Full text link
    We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency Δ\Delta of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter q1/2q \simeq 1/2; the result extends and validates analysis based on the linearized theory of gravitational wave emission. The second is a typical bremsstrahlung angular pattern in the early period of emission at the wave zone, a consequence of the deceleration of the black holes as they coalesce; this pattern evolves to a quadrupole form for later times.Comment: 16 pages, 4 figures, to appear in Int. J. Modern Phys. D (2008
    corecore