436 research outputs found

    Enhanced light trapping using plasmonic nanoparticles

    No full text
    International audiencePlasmonics is a new light trapping method used in photovoltaic (PV) solar cells. A significant enhancement of the scattered and absorbed incident light due to the use of silver nanoparticles (Ag-NPs) was observed, which yield to the exaltation of the electromagnetic field in the vicinity of these NPs. In this context, we investigate optically and morphologically the effect of the NPs size dependence on the localized surface plasmon resonance. Extinction, absorption and scattering cross sections are calculated using Mie theory

    Comparative Notes on the Biology and Development of \u3ci\u3eEpeolus compactus\u3c/i\u3e Cresson., a Cleptoparasite of \u3ci\u3eColletes kincaidii\u3c/i\u3e Cockerell (Hymenoptera: Anthophoridae, Colletidae)

    Get PDF
    The biology of the nomadine bee, Epeolus compactus Cresson, is described based on composite notes taken from field, laboratory, and greenhouse studies of the host bee, Colletes kincaidii Cockerell. Details of Epeolus egg deposition are described and compared with other known noma dine bees. We document the release of a glandular secretion during egg deposition by E. compactus which dissolves the polyester host cell lining on contact. Late embryogenesis and hatching of Epeolus are described and adaptive features are discussed. The cleptoparasitic habits of the first instar are outlined, and anatomical differences expressed by various ins tars are compared. Methods used by Epeolus in parasitizing host nests excavated by the nesting Colletes female, or in host nests constructed in existing burrows, are reported. Possible reasons why rates of parasitism differ between kinds of nest architectures constructed by the host bee are discussed in some detail. Potentially useful biosystematic characters of immature stages of Epeolus are compared with those of other known nomadine bees

    Targets for high repetition rate laser facilities: Needs, challenges and perspectives

    Get PDF
    A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10Ã\u82 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: Dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities

    Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions.

    Get PDF
    The five sterile stamens, or staminodes, in Parnassia palustris act both as false and as true nectaries. They attract pollinators with their conspicuous, but non-rewarding tips, and also produce nectar at the base. We removed staminodes experimentally and compared pollinator visitation rate and duration and seed set in flowers with and without staminodes in two different populations. We also examined the relative importance of the staminode size to other plant traits. Finally, we bagged, emasculated, and supplementary cross-pollinated flowers to determine the pollination strategy and whether reproduction was limited by pollen availability. Flowers in both populations were highly dependent on pollinator visitation for maximum seed set. In one population pollinators primarily cross-pollinated flowers, whereas in the other the pollinators facilitated self-pollination. The staminodes caused increased pollinator visitation rate and duration to flowers in both populations. The staminodes increased female reproductive success, but only when pollen availability constrained female reproduction. Simple linear regression indicated a strong selection on staminode size, multiple regression suggested that selection on staminode size was mainly caused by correlation with other traits that affected female fitness. [ABSTRACT FROM AUTHOR

    Plasmon-Mediated Drilling in Thin Metallic Nanostructures

    Get PDF
    Tetrahedral nanopyramids made of silver and gold over ITO/glass surfaces are fabricated. Our protocol is based on nanosphere lithography (NSL) with the deposition of thicker metal layers. After removing the microspheres used in the NSL process, an array of metallic tetrahedral nanostructures of ~350-400 nm height is formed. The reported procedure avoids the use of any stabilizing surfactant molecules that are generally necessary to segregate the individual particles onto surfaces. We focus here on the optical and the physical properties of these plasmonic surfaces using near-field spectroscopy in conjunction with finite difference time domain (FDTD) modeling of the electric field. Remarkably, FDTD shows that the localized surface plasmon resonance is confined in the plane formed by the edges of two facing pyramids that is parallel to the polarization of the impinging excitation laser. The variable gap between the edges of two adjacent pyramids shows a broader localized surface plasmon and larger specific surface as opposed to the usual nanotriangle array. Localized enhancement of the electric field is experimentally investigated by coating the plasmonic surface with a thin film of photosensitive azopolymer onto the surface of the nanopyramids. The reported deformation upon radiation of the surface topography is visualized by atomic force microscopy and suggests the potentiality of these 3D nanopyramids for near-field enhancement. This last feature is clearly confirmed by surface-enhanced Raman scattering measurement with 4-nitrothiophenol molecules deposited on the pyramid platforms. The potentiality of such 3D nanostructures in plasmonics and surface spectroscopy is thus clearly demonstrated

    Uncertainty Quantification for SAE J2954 Compliant Static Wireless Charge Components

    Get PDF
    The present work aims at quantifying how, and how much, the uncertainties on the components and material parameters of a wireless power transfer (WPT) system for the static charge of electric vehicles affect the overall efficiency and functionality of the final produced device. With the aim of considering the perspective of a possible industrial developer, the parameters selected for the uncertainty quantification are chosen to be the capacitance values of the compensation capacitors and the electromagnetic material parameters used for the construction of the magnetic structure of a WPT system, i.e. the parameters of the elements to be purchased. The analysis is based on a standard system among the ones provided by the current SAE J2954 recommended practice

    Parsivoltinism in Three Species of Osmia Bees

    Full text link

    Trends of European research and development in district heating technologies

    Get PDF
    There is a considerable diversity of district heating (DH) technologies, components and interaction in EU countries. The trends and developments of DH are investigated in this paper. Research of four areas related to DH systems and their interaction with: fossil fuels, renewable energy (RE) sources, energy efficiency of the systems and the impact on the environment and the human health are described in the following content. The key conclusion obtained from this review is that the DH development requires more flexible energy systems with building automations, more significant contribution of RE sources, more dynamic prosumers׳ participation, and integration with mix fuel energy systems, as part of smart energy sustainable systems in smart cities. These are the main issues that Europe has to address in order to establish sustainable DH systems across its countries.This research was conducted in collaboration between Wrocław University of Technology (Poland) and Brunel University London (UK). The support for the Polish team was by the Ministry of Science and HigherEducationunderGrantno.50532

    Ozone Improves the Aromatic Fingerprint of White Grapes

    Get PDF
    Ozone, a powerful oxidative stressor, has been recently used in wine industry as sanitizing agent to reduce spoilage microflora on grapes. In this study, we evaluated ozone-induced metabolic and molecular responses during postharvest grape dehydration. Ozone increased the contents of total volatile organic compounds (VOCs), which have a great impact on the organoleptic properties of grapes and wines. Among terpenes, responsible for floral and fruity aroma, linalool, geraniol and nerol were the major aromatic markers of Moscato bianco grapes. They were significantly affected by the long-term ozone treatment, increasing their concentration in the last phases of dehydration (>20% weight loss). At molecular level, our results demonstrated that both postharvest dehydration and ozone exposure induce the biosynthesis of monoterpenes via methylerythritol phosphate (MEP) pathway and of aldehydes from lipoxygenase-hydroperoxide lyase (LOX-HPL) pathway. Therefore, transcriptional changes occurred and promoted the over-production of many important volatile compounds for the quality of white grapes
    corecore