738 research outputs found
Exact Constructions of a Family of Dense Periodic Packings of Tetrahedra
The determination of the densest packings of regular tetrahedra (one of the
five Platonic solids) is attracting great attention as evidenced by the rapid
pace at which packing records are being broken and the fascinating packing
structures that have emerged. Here we provide the most general analytical
formulation to date to construct dense periodic packings of tetrahedra with
four particles per fundamental cell. This analysis results in six-parameter
family of dense tetrahedron packings that includes as special cases recently
discovered "dimer" packings of tetrahedra, including the densest known packings
with density . This study strongly suggests that
the latter set of packings are the densest among all packings with a
four-particle basis. Whether they are the densest packings of tetrahedra among
all packings is an open question, but we offer remarks about this issue.
Moreover, we describe a procedure that provides estimates of upper bounds on
the maximal density of tetrahedron packings, which could aid in assessing the
packing efficiency of candidate dense packings.Comment: It contains 25 pages, 5 figures
Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. II. Anisotropy in particle shape
We extend the results from the first part of this series of two papers by
examining hyperuniformity in heterogeneous media composed of impenetrable
anisotropic inclusions. Specifically, we consider maximally random jammed
packings of hard ellipses and superdisks and show that these systems both
possess vanishing infinite-wavelength local-volume-fraction fluctuations and
quasi-long-range pair correlations. Our results suggest a strong generalization
of a conjecture by Torquato and Stillinger [Phys. Rev. E. 68, 041113 (2003)],
namely that all strictly jammed saturated packings of hard particles, including
those with size- and shape-distributions, are hyperuniform with signature
quasi-long-range correlations. We show that our arguments concerning the
constrained distribution of the void space in MRJ packings directly extend to
hard ellipse and superdisk packings, thereby providing a direct structural
explanation for the appearance of hyperuniformity and quasi-long-range
correlations in these systems. Additionally, we examine general heterogeneous
media with anisotropic inclusions and show for the first time that one can
decorate a periodic point pattern to obtain a hard-particle system that is not
hyperuniform with respect to local-volume-fraction fluctuations. This apparent
discrepancy can also be rationalized by appealing to the irregular distribution
of the void space arising from the anisotropic shapes of the particles. Our
work suggests the intriguing possibility that the MRJ states of hard particles
share certain universal features independent of the local properties of the
packings, including the packing fraction and average contact number per
particle.Comment: 29 pages, 9 figure
Hyperuniform long-range correlations are a signature of disordered jammed hard-particle packings
We show that quasi-long-range (QLR) pair correlations that decay
asymptotically with scaling in -dimensional Euclidean space
, trademarks of certain quantum systems and cosmological
structures, are a universal signature of maximally random jammed (MRJ)
hard-particle packings. We introduce a novel hyperuniformity descriptor in MRJ
packings by studying local-volume-fraction fluctuations and show that
infinite-wavelength fluctuations vanish even for packings with size- and
shape-distributions. Special void statistics induce hyperuniformity and QLR
pair correlations.Comment: 10 pages, 3 figures; changes to figures and text based on review
process; accepted for publication at Phys. Rev. Let
Hyperuniformity, quasi-long-range correlations, and void-space constraints in maximally random jammed particle packings. I. Polydisperse spheres
Hyperuniform many-particle distributions possess a local number variance that
grows more slowly than the volume of an observation window, implying that the
local density is effectively homogeneous beyond a few characteristic length
scales. Previous work on maximally random strictly jammed sphere packings in
three dimensions has shown that these systems are hyperuniform and possess
unusual quasi-long-range pair correlations, resulting in anomalous logarithmic
growth in the number variance. However, recent work on maximally random jammed
sphere packings with a size distribution has suggested that such
quasi-long-range correlations and hyperuniformity are not universal among
jammed hard-particle systems. In this paper we show that such systems are
indeed hyperuniform with signature quasi-long-range correlations by
characterizing the more general local-volume-fraction fluctuations. We argue
that the regularity of the void space induced by the constraints of saturation
and strict jamming overcomes the local inhomogeneity of the disk centers to
induce hyperuniformity in the medium with a linear small-wavenumber nonanalytic
behavior in the spectral density, resulting in quasi-long-range spatial
correlations. A numerical and analytical analysis of the pore-size distribution
for a binary MRJ system in addition to a local characterization of the
n-particle loops governing the void space surrounding the inclusions is
presented in support of our argument. This paper is the first part of a series
of two papers considering the relationships among hyperuniformity, jamming, and
regularity of the void space in hard-particle packings.Comment: 40 pages, 15 figure
Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition
The small wavenumber behavior of the structure factor of
overcompressed amorphous hard-sphere configurations was previously studied for
a wide range of densities up to the maximally random jammed state, which can be
viewed as a prototypical glassy state [A. Hopkins, F. H. Stillinger and S.
Torquato, Phys. Rev. E, 86, 021505 (2012)]. It was found that a precursor to
the glassy jammed state was evident long before the jamming density was reached
as measured by a growing nonequilibrium length scale extracted from the volume
integral of the direct correlation function , which becomes long-ranged
as the critical jammed state is reached. The present study extends that work by
investigating via computer simulations two different atomic models: the
single-component Z2 Dzugutov potential in three dimensions and the
binary-mixture Kob-Andersen potential in two dimensions. Consistent with the
aforementioned hard-sphere study, we demonstrate that for both models a
signature of the glass transition is apparent well before the transition
temperature is reached as measured by the length scale determined from from the
volume integral of the direct correlation function in the single-component case
and a generalized direct correlation function in the binary-mixture case. The
latter quantity is obtained from a generalized Orstein-Zernike integral
equation for a certain decoration of the atomic point configuration. We also
show that these growing length scales, which are a consequence of the
long-range nature of the direct correlation functions, are intrinsically
nonequilibrium in nature as determined by an index that is a measure of
deviation from thermal equilibrium. It is also demonstrated that this
nonequilibrium index, which increases upon supercooling, is correlated with a
characteristic relaxation time scale.Comment: 26 pages, 14 figure
Geometrical Ambiguity of Pair Statistics. I. Point Configurations
Point configurations have been widely used as model systems in condensed
matter physics, materials science and biology. Statistical descriptors such as
the -body distribution function is usually employed to characterize
the point configurations, among which the most extensively used is the pair
distribution function . An intriguing inverse problem of practical
importance that has been receiving considerable attention is the degree to
which a point configuration can be reconstructed from the pair distribution
function of a target configuration. Although it is known that the pair-distance
information contained in is in general insufficient to uniquely determine
a point configuration, this concept does not seem to be widely appreciated and
general claims of uniqueness of the reconstructions using pair information have
been made based on numerical studies. In this paper, we introduce the idea of
the distance space, called the space. The pair distances of a
specific point configuration are then represented by a single point in the
space. We derive the conditions on the pair distances that can be
associated with a point configuration, which are equivalent to the
realizability conditions of the pair distribution function . Moreover, we
derive the conditions on the pair distances that can be assembled into distinct
configurations. These conditions define a bounded region in the
space. By explicitly constructing a variety of degenerate point configurations
using the space, we show that pair information is indeed
insufficient to uniquely determine the configuration in general. We also
discuss several important problems in statistical physics based on the
space.Comment: 28 pages, 8 figure
Dense sphere packings from optimized correlation functions
Elementary smooth functions (beyond contact) are employed to construct pair
correlation functions that mimic jammed disordered sphere packings. Using the
g2-invariant optimization method of Torquato and Stillinger [J. Phys. Chem. B
106, 8354, 2002], parameters in these functions are optimized under necessary
realizability conditions to maximize the packing fraction phi and average
number of contacts per sphere Z. A pair correlation function that incorporates
the salient features of a disordered packing and that is smooth beyond contact
is shown to permit a phi of 0.6850: this value represents a 45% reduction in
the difference between the maximum for congruent hard spheres in three
dimensions, pi/sqrt{18} ~ 0.7405, and 0.64, the approximate fraction associated
with maximally random jammed (MRJ) packings in three dimensions. We show that,
surprisingly, the continued addition of elementary functions consisting of
smooth sinusoids decaying as r^{-4} permits packing fractions approaching
pi/sqrt{18}. A translational order metric is used to discriminate between
degrees of order in the packings presented. We find that to achieve higher
packing fractions, the degree of order must increase, which is consistent with
the results of a previous study [Torquato et al., Phys. Rev. Lett. 84, 2064,
2000].Comment: 26 pages, 9 figures, 1 table; added references, fixed typos,
simplified argument and discussion in Section IV
Structure of hard-hypersphere fluids in odd dimensions
The structural properties of single component fluids of hard hyperspheres in
odd space dimensionalities are studied with an analytical approximation
method that generalizes the Rational Function Approximation earlier introduced
in the study of hard-sphere fluids [S. B. Yuste and A. Santos, Phys. Rev. A
{\bf 43}, 5418 (1991)]. The theory makes use of the exact form of the radial
distribution function to first order in density and extends it to finite
density by assuming a rational form for a function defined in Laplace space,
the coefficients being determined by simple physical requirements. Fourier
transform in terms of reverse Bessel polynomials constitute the mathematical
framework of this approximation, from which an analytical expression for the
static structure factor is obtained. In its most elementary form, the method
recovers the solution of the Percus-Yevick closure to the Ornstein-Zernike
equation for hyperspheres at odd dimension. The present formalism allows one to
go beyond by yielding solutions with thermodynamic consistency between the
virial and compressibility routes to any desired equation of state. Excellent
agreement with available computer simulation data at and is
obtained. As a byproduct of this study, an exact and explicit polynomial
expression for the intersection volume of two identical hyperspheres in
arbitrary odd dimensions is given.Comment: 18 pages, 7 figures; v2: new references added plus minor changes; to
be published in PR
Do Binary Hard Disks Exhibit an Ideal Glass Transition?
We demonstrate that there is no ideal glass transition in a binary hard-disk
mixture by explicitly constructing an exponential number of jammed packings
with densities spanning the spectrum from the accepted ``amorphous'' glassy
state to the phase-separated crystal. Thus the configurational entropy cannot
be zero for an ideal amorphous glass, presumed distinct from the crystal in
numerous theoretical and numerical estimates in the literature. This objection
parallels our previous critique of the idea that there is a most-dense random
(close) packing for hard spheres [Torquato et al, Phys. Rev. Lett., 84, 2064
(2000)].Comment: Submitted for publicatio
Collective Coordinate Control of Density Distributions
Real collective density variables [c.f.
Eq.\ref{Equation3})] in many-particle systems arise from non-linear
transformations of particle positions, and determine the structure factor
, where denotes the wave vector. Our objective is to
prescribe and then to find many-particle configurations
that correspond to such a target using a numerical optimization
technique. Numerical results reported here extend earlier one- and
two-dimensional studies to include three dimensions. In addition, they
demonstrate the capacity to control in the neighborhood of
0. The optimization method employed generates
multi-particle configurations for which , , and 1, 2, 4,
6, 8, and 10. The case 1 is relevant for the Harrison-Zeldovich
model of the early universe, for superfluid , and for jammed
amorphous sphere packings. The analysis also provides specific examples of
interaction potentials whose classical ground state are configurationally
degenerate and disordered.Comment: 26 pages, 8 figure
- …
