3,325 research outputs found
The VLA Survey of the Chandra Deep Field South. V. Evolution and Luminosity Functions of sub-mJy radio sources and the issue of radio emission in radio-quiet AGN
We present the evolutionary properties and luminosity functions of the radio
sources belonging to the Chandra Deep Field South VLA survey, which reaches a
flux density limit at 1.4 GHz of 43 microJy at the field center and redshift
~5, and which includes the first radio-selected complete sample of radio-quiet
active galactic nuclei (AGN). We use a new, comprehensive classification scheme
based on radio, far- and near-IR, optical, and X-ray data to disentangle
star-forming galaxies from AGN and radio-quiet from radio-loud AGN. We confirm
our previous result that star-forming galaxies become dominant only below 0.1
mJy. The sub-mJy radio sky turns out to be a complex mix of star-forming
galaxies and radio-quiet AGN evolving at a similar, strong rate; non-evolving
low-luminosity radio galaxies; and declining radio powerful (P > 3 10^24 W/Hz)
AGN. Our results suggest that radio emission from radio-quiet AGN is closely
related to star formation. The detection of compact, high brightness
temperature cores in several nearby radio-quiet AGN can be explained by the
co-existence of two components, one non-evolving and AGN-related and one
evolving and star-formation-related. Radio-quiet AGN are an important class of
sub-mJy sources, accounting for ~30% of the sample and ~60% of all AGN, and
outnumbering radio-loud AGN at < 0.1 mJy. This implies that future, large area
sub-mJy surveys, given the appropriate ancillary multi-wavelength data, have
the potential of being able to assemble vast samples of radio-quiet AGN
by-passing the problems of obscuration, which plague the optical and soft X-ray
bands.Comment: 19 pages, 14 figures (8 in color), accepted for publication in the
Astrophysical Journa
Radio faint AGN: a tale of two populations
We study the Extended Chandra Deep Field South (E-CDFS) Very Large Array
sample, which reaches a flux density limit at 1.4 GHz of 32.5 microJy at the
field centre and redshift ~ 4, and covers ~ 0.3 deg^2. Number counts are
presented for the whole sample while the evolutionary properties and luminosity
functions are derived for active galactic nuclei (AGN). The faint radio sky
contains two totally distinct AGN populations, characterised by very different
evolutions, luminosity functions, and Eddington ratios: radio-quiet
(RQ)/radiative-mode, and radio-loud/jet-mode AGN. The radio power of RQ AGN
evolves ~ (1+z)^2.5, similarly to star-forming galaxies, while the number
density of radio-loud ones has a peak at ~ 0.5 and then declines at higher
redshifts. The number density of radio-selected RQ AGN is consistent with that
of X-ray selected AGN, which shows that we are sampling the same population.
The unbiased fraction of radiative-mode RL AGN, derived from our own and
previously published data, is a strong function of radio power, decreasing from
~ 0.5 at P_1.4GHz ~ 10^24 W/Hz to ~ 0.04$ at P_1.4GHz ~ 10^22 W/Hz. Thanks to
our enlarged sample, which now includes ~ 700 radio sources, we also confirm
and strengthen our previous results on the source population of the faint radio
sky: star-forming galaxies start to dominate the radio sky only below ~ 0.1
mJy, which is also where radio-quiet AGN overtake radio-loud ones.Comment: 19 pages, 13 figures, accepted for publication in MNRA
Mechanical circulatory support for destination therapy.
Patients with chronic heart failure who are not eligible for heart transplant and whose life expectancy depends mainly on the heart disease may benefit from mechanical circulatory support. Mechanical circulatory support restores adequate cardiac output and organ perfusion and eventually improves patients' clinical condition, quality of life and life expectancy. This treatment is called destination therapy (DT) and we estimate that in Switzerland more than 120 patients per year could benefit from it. In the last 10 years, design of the devices, implantation techniques and prognoses have changed dramatically. The key to successful therapy with a left ventricular assist device is appropriate patient selection, although we are still working on the definition of reliable inclusion and exclusion criteria and optimal timing for surgical implantation. Devices providing best long-term results are continuous flow, rotary or axial blood pumps implanted using minimally invasive techniques on a beating heart. These new devices (Thoratec HeartMate II and HeartWare HVAD) have only a single moving part, and have improved durability with virtually 10 years freedom from mechanical failure. In selected patients, the overall actuarial survival of DT patients is 75% at 1 year and 62% at 2 years, with a clear improvement in quality of life compared with medical management only. Complications include bleeding and infections; their overall incidence is significantly lower than with previous devices and their management is well defined. DT is evolving into an effective and reasonably cost-effective treatment option for a growing population of patients not eligible for heart transplant, showing encouraging survival rates at 2 years and providing clear improvement in quality of life. The future is bright for people suffering from chronic heart failure
- …
