44 research outputs found
On the validity of modeling concepts for the simulation of groundwater flow in lowland peat areas – case study at the Zegveld experimental field
The groundwater flow models currently used in the western part of The Netherlands and in other similar peaty areas are thought to be a too simplified representation of the hydrological reality. One of the reasons is that, due to the schematization of the subsoil, its heterogeneity cannot be represented adequately. Moreover, the applicability of Darcy's law in these types of soils has been questioned, but this law forms the basis of most groundwater flow models. <br><br> With the purpose of assessing the typical heterogeneity of the subsoil and to verify the applicability of Darcy's law, geo-hydrological fieldwork was completed at an experimental field within a research area in the western part of The Netherlands. The assessments were carried out for the so-called Complex Confining Layer (CCL), which is the Holocene peaty to clayey layer overlying Pleistocene sandy deposits. Borehole drilling through the CCL with a hand auger was completed and revealed the typical heterogeneous character of this layer, showing a dominance of muddy, humified peat which is alternated with fresher peat and clay. <br><br> Slug tests were carried out to study the applicability of Darcy's law, given that previous studies suggested its non-validity for humified peat soils due to a variable horizontal hydraulic conductivity <i>K</i><sub>h</sub> with head differences. For higher humification degrees, the experiments indeed suggested a variable <i>K</i><sub>h</sub>, but this appeared to be the result of the inappropriate use of steady-state formulae for transient experiments in peaty environments. The muddy peat sampled has a rather plastic nature, and the high compressibility of this material leads to transient behavior. However, using transient formulae, the slug tests conducted for different initial groundwater heads showed that there was hardly any evidence of a variation of the hydraulic conductivity with the applied head differences. Therefore, Darcy's law can be used for typical peat soils present in The Netherlands. <br><br> The heterogeneity of the subsoil and the apparent applicability of Darcy's law were taken into account for the detailed heterogeneous model that was prepared for the research area. A MODFLOW model consisting of 13 layers in which 4 layers represent the heterogeneous CCL was set up for an average year, assuming steady-state conditions; and for the winter of 2009 to 2010, adopting transient conditions. The transient model was extended to simulate for longer periods with the objective of visualizing the flow paths through the CCL. The results from these models were compared with a 10 layer model, whereby the CCL is represented by a single layer assuming homogeneity. From the comparison of the two model types, the conclusion could be drawn that a single layer schematization of the CCL produces flowpath patterns which are not the same but still quite similar to a 4 layer representation of the CCL. However, the single layer schematization results in a considerable underestimation of the flow velocity, and subsequently a longer travel time, through the CCL. Therefore, a single layer model of the CCL seems quite appropriate to represent the general flow behavior of the shallow groundwater system, but would be inappropriate for transport modeling through the CCL
Final Interpretation Report of the PHEBUS test FPT0: Bundle Aspects
In this paper, the actual status of understanding of the dominant bundle degradation processes is presented. Here, mainly the results reported in the last years in the Bundle Interpretation Circles organised by JRC/IE and IRSN (Institut de Radioprotection et de Surete Nucleaire, Cadarache) are summarised. For the extensive and detailed computational analyses the commonly used severe accident codes such as ICARE, MELCOR, SCDAP/RELAP and ATHLET-CD are used. For the analysis of fission product release from the FPT0 bundle, specific codes such as SVECHA and XMPR were used as well.JRC.F.4-Nuclear design safet
OECD/NEA-CSNI international standard problem No. 31. CORA-13 experiment on severe fuel damage
SARNET benchmark on QUENCH-11. Final report
In den QUENCH-Versuchen wird der Wasserstoffquellterm bei der Einspeisung von Notkühlwasser in einen trockenen, überhitzten Reaktorkern eines Leichtwasserreaktors untersucht. Ferner wird in den Versuchen das Verhalten von überhitzten Brennelementen unter verschiedenen Flutbedingungen untersucht, eine Datenbasis zur Modellentwicklung und eine Weiterentwicklung von Rechenprogrammen zu Schweren Störfällen (engl. SFD – Severe Fuel Damage) erstellt.
Der Ausdampf-Versuch QUENCH-11 wurde am 8. Dezember 2005 durchgeführt. Es war das zweite Experiment im Rahmen des EU-geförderten LACOMERA-Programms. Es sollte einen Kühlmittelpumpenausfall während eines Kühlmittelverluststörfalls (hier ein sog. Small Break LOCA) oder einer plötzlichen Stromabschaltung (eng. „station blackout“) mit einer späten Druckentlastung des Primärsystems simulieren. Verbunden mit dem Unfallszenario ist das Ausdampfen eines teilgefüllten Reaktorkerns bzw. des Versuchsbündels. Das Ziel war die Untersuchung des Bündelverhaltens während des Ausdampfens und des nachfolgenden Abschreckens mit reduzierter Wassereinspeiserate. Es war das erste Experiment, in dem der gesamte Unfallablauf von der Ausdampfphase bis zur verzögerten Flutung des Bündels bei einer geringen Wasser-Einspeiserate untersucht werden sollte. Das Ausmaß der Wechselwirkungen von Thermalhydraulik und Materialien war in dem Experiment ausgeprägter als in früheren QUENCH-Versuchen. Das Experiment wurde von INRNE Sofia (Bulgarische Akademie der Wissenschaften) vorgeschlagen und zusammen mit dem Forschungszentrum Karlsruhe definiert.
Nach dem Experiment wurde entschieden, die QUENCH-11-Daten für ein Rechenprogramm-Benchmark, bei dem die Rechenergebnisse mit den experimentellen Daten verglichen werden, im Rahmen des Europäischen Exzellenz-Netzwerks SARNET anzubieten, um die Zuverlässigkeit der Rechnungen für die verschiedenen Phasen von Unfall bzw. Experiment zu überprüfen. Die eingesetzten SFD-Rechenprogramme waren ASTEC, ATHLET-CD, ICARE-CATHARE, MELCOR, RATEG/SVECHA, RELAP/SCDAPSIM, und SCDAP/RELAP5. Die Koordination für den Vergleich übernahm INRNE.
Als Grundlage für den Vergleich dienten die zeitlichen Verläufe von Temperaturen, Wasserstofferzeugung und anderer wichtiger Daten. Außerdem wurden Axialprofile, in erster Linie die der Temperatur zum Zeitpunkt des Flutbeginns und des Endstadiums, d. h. bei der Testzeit von 7000 s, verglichen. Für die meisten Rechenergebnisse kann ein gemeinsamer Trendverlauf angegeben werden. Größere Unterschiede zeigen die Ergebnisse für die Wasserstofferzeugung und die zugehörige Oxidschichtdicke.
Der Grad der Übereinstimmung zwischen Rechnung und Experiment wird von den Schwachstellen der Rechnung und des Experiments gleichermaßen mitbestimmt. SFD-Rechenprogramme sind zur Analyse von typischen Kernreaktorunfällen entwickelt worden. Einzelne Besonderheiten der experimentellen Anordnung integraler Experimente (wie auch QUENCH-11) sind bedingt durch das Vorhandensein von Dampfführungsrohr (Shroud) und Elektrodenmaterial für die elektrische Stabheizung nicht reaktortypisch und können daher nicht in der gewünschten Einzelheit im Rechenprogramm nachgebildet werden. Hinzu kommen Effekte durch den Anwender. Da jedoch die Bandbreite der wesentlichen Rechenergebnisse einschließlich der Wasserstofferzeugung nicht extrem groß ist, kann das Ergebnis des SFD-Rechenprogramm-Benchmarks insgesamt als positiv bewertet werden.
Ein Vergleich mit anderen Experimenten zeigt einen weiteren Bedarf an Verbesserungen besonders im Hinblick auf die Oxidation stark zerstörter Bündelstrukturen während des Flutens.
Zusätzlich erwies sich das Rechenprogramm-Benchmark für einige Programmanwender als wertvoll, um sich mit den physikalischen Problematiken und der Anwendung von großen SFD-Rechenprogrammen vertraut zu machen. Es dient dem Erfahrungsaustausch mit jüngeren Wissenschaftlern und Ingenieuren und der Aufrechterhaltung des Standards der nuklearen Sicherheit
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Droughts are often long-lasting phenomena, without a distinct start or end and with impacts cascading across sectors and systems, creating long-term legacies. Nevertheless, our current perceptions and management of droughts and their impacts are often event-based, which can limit the effective assessment of drought risks and reduction of drought impacts. Here, we advocate for changing this perspective and viewing drought as a hydrological–ecological–social continuum. We take a systems theory perspective and focus on how “memory” causes feedback and interactions between parts of the interconnected systems at different timescales. We first discuss the characteristics of the drought continuum with a focus on the hydrological, ecological, and social systems separately, and then we study the system of systems. Our analysis is based on a review of the literature and a study of five cases: Chile, the Colorado River basin in the USA, northeast Brazil, Kenya, and the Rhine River basin in northwest Europe. We find that the memories of past dry and wet periods, carried by both bio-physical (e.g. groundwater, vegetation) and social systems (e.g. people, governance), influence how future drought risk manifests. We identify four archetypes of drought dynamics: impact and recovery, slow resilience building, gradual collapse, and high resilience–big shock. The interactions between the hydrological, ecological, and social systems result in systems shifting between these types, which plays out differently in the five case studies. We call for more research on drought preconditions and recovery in different systems, on dynamics cascading between systems and triggering system changes, and on dynamic vulnerability and maladaptation. Additionally, we advocate for more continuous monitoring of drought hazards and impacts, modelling tools that better incorporate memories and adaptation responses, and management strategies that increase societal and institutional memory. This will help us to better deal with the complex hydrological–ecological–social drought continuum and identify effective pathways to adaptation and mitigation
Review article: Drought as a continuum – memory effects in interlinked hydrological, ecological, and social systems
Droughts are often long-lasting phenomena, without a distinct start or end and with impacts cascading across sectors and systems, creating long-term legacies. Nevertheless, our current perceptions and management of droughts and their impacts are often event-based, which can limit the effective assessment of drought risks and reduction of drought impacts. Here, we advocate for changing this perspective and viewing drought as a hydrological–ecological–social continuum. We take a systems theory perspective and focus on how “memory” causes feedback and interactions between parts of the interconnected systems at different timescales. We first discuss the characteristics of the drought continuum with a focus on the hydrological, ecological, and social systems separately, and then we study the system of systems. Our analysis is based on a review of the literature and a study of five cases: Chile, the Colorado River basin in the USA, northeast Brazil, Kenya, and the Rhine River basin in northwest Europe. We find that the memories of past dry and wet periods, carried by both bio-physical (e.g. groundwater, vegetation) and social systems (e.g. people, governance), influence how future drought risk manifests. We identify four archetypes of drought dynamics: impact and recovery, slow resilience building, gradual collapse, and high resilience–big shock. The interactions between the hydrological, ecological, and social systems result in systems shifting between these types, which plays out differently in the five case studies. We call for more research on drought preconditions and recovery in different systems, on dynamics cascading between systems and triggering system changes, and on dynamic vulnerability and maladaptation. Additionally, we advocate for more continuous monitoring of drought hazards and impacts, modelling tools that better incorporate memories and adaptation responses, and management strategies that increase societal and institutional memory. This will help us to better deal with the complex hydrological–ecological–social drought continuum and identify effective pathways to adaptation and mitigation.</p
Surface water and shallow groundwater flow systems in lowland peat areas : case study at the Zegveld experimental farm
Previous studies suggesting the non validity of Darcy's law for humified peat soils given by a variable hydraulic conductivity K with time and with hydraulic gradient encouraged the research on this topic in the lowland Dutch peat areas. One of the main objectives of this scientific research was to investigate the applicability of this law in the aforementioned area. With this aim field experiments were carried out in an experimental farm in Zegveld and soil analysis were fulfilled to investigate the hydraulic characteristics of the peat, especially its humification degree. Different methods have been defined to determine the degree of decomposition or humification of a peat soil. However, a relationship between these methods was not found from literature and the most common method, von Post method, requires experience to distinguish between 10 different peat classes. In this research a relationship between two quantitative laboratory methods and the von Post method was established. Moreover, one of these laboratory methods was suggested, as an adaptation from an existing method
Results of the international standard problem No. 31 CORA-13 experiment on severe fuel damage
Results of the international standard problem No. 31 CORA-13 experiment on severe fuel damage
On the validity of modeling concepts for (the simulation of) groundwater flow in lowland peat areas – case study at the Zegveld experimental field
Abstract. The groundwater flow models currently used in the western part of The Netherlands and in other similar peaty areas are thought to be a too simplified representation of the hydrological reality. One of the reasons is that due to the schematization of the subsoil, its heterogeneity cannot be represented adequately. Moreover, the applicability of Darcy's law in these types of soils has been questioned, but this law forms the basis of most groundwater flow models. With the purpose of assessing the typical heterogeneity of the subsoil and to verify the applicability of Darcy's law fieldwork was completed at a research site in the western part of The Netherlands. The assessments were carried for the so called Complex Confining Layer (CCL), which is the Holocene peaty to clayey layer overlying Pleistocene sandy deposits. Borehole drilling through the CCL with a hand auger was completed and revealed the typical heterogeneous character of this layer showing a dominance of muddy, humified peat which is alternated with fresher peat and clay. Slug tests were carried out to study the applicability of Darcy's law given that previous studies suggested the non validity for humified peat soils given by a variable hydraulic conductivity K with the hydraulic gradient. For higher humification degrees, the experiments indeed suggested a variable K, but this seems to be the result of the inappropriate use of steady-state formulae for transient experiments in peaty environments. The muddy peat sampled has a rather plastic nature, and the high compressibility of this material leads to transient behavior. However, using transient formulae, the slug tests conducted for different initial hydraulic heads showed that there was hardly any evidence of a variation of the hydraulic conductivity with the hydraulic gradient. Therefore, Darcy's law can be used for peat soils. The heterogeneity of the subsoil and the apparent applicability of Darcy's law were taking into account for the detailed heterogeneous model that was prepared for the research site. A MODFLOW model consisting of 13 layers in which 4 layers represent the heterogeneous CCL was set up for an average year assuming steady state conditions and for the winter of 2009 to 2010 adopting transient conditions. The transient model was then extended for a whole hydrological year and for an eight year period with the objective of visualizing the flowpaths through the CCL. The results from these models were compared with a 10 layer model whereby the CCL is represented by a single layer assuming homogeneity. From the comparison of the two model types the conclusion could be drawn that a single layer schematization of the CCL produces flowpath patterns which are not the same but still quite similar to a 4 layer representation of the CCL. However, the single layer schematization results in a considerable underestimation of the flow velocity, and subsequently a longer travel time, through the CCL. Therefore, a single layer model of the CCL seems quite appropriate to represent the flow behavior of the shallow groundwater system, but would be inappropriate for transport modeling through the CCL.
</jats:p
