1,074 research outputs found

    Experimental observation of the X-shaped near field spatio-temporal correlation of ultra-broadband twin beams

    Full text link
    In this work we present the experimental observation of the non factorable near field spatio-temporal correlation of ultra-broadband twin beams generated by parametric down conversion (PDC), in an interferometric-type experiment using sum frequency generation, where both the temporal and spatial degrees of freedom of PDC light are controlled with very high resolution. The revealed X-structure of the correlation is in accordance with the predictions of the theory.Comment: 5 pages, 3 figure

    Cross-spectral analysis of the X-ray variability of Mrk 421

    Get PDF
    Using the cross-spectral method, we confirm the existence of the X-ray hard lags discovered with cross-correlation function technique during a large flare of Mrk 421 observed with BeppoSAX . For the 0.1--2 versus 2--10keV light curves, both methods suggest sub-hour hard lags. In the time domain, the degree of hard lag, i.e., the amplitude of the 3.2--10 keV photons lagging the lower energy ones, tends to increase with the decreasing energy. In the Fourier frequency domain, by investigating the cross-spectra of the 0.1--2/2--10 keV and the 2--3.2/3.2--10 keV pairs of light curves, the flare also shows hard lags at the lowest frequencies. However, with the present data, it is impossible to constrain the dependence of the lags on frequencies even though the detailed simulations demonstrate that the hard lags at the lowest frequencies probed by the flare are not an artifact of sparse sampling, Poisson and red noise. As a possible interpretation, the implication of the hard lags is discussed in the context of the interplay between the (diffusive) acceleration and synchrotron cooling of relativistic electrons responsible for the observed X-ray emission. The energy-dependent hard lags are in agreement with the expectation of an energy-dependent acceleration timescale. The inferred magnetic field (B ~ 0.11 Gauss) is consistent with the value inferred from the Spectral Energy Distributions of the source. Future investigations with higher quality data that whether or not the time lags are energy-/frequency-dependent will provide a new constraint on the current models of the TeV blazars.Comment: 11 pages, 6 figures, accepted by MNRA

    Quantum spatial correlations in high-gain parametric down-conversion measured by means of a CCD camera

    Full text link
    We consider travelling-wave parametric down-conversion in the high-gain regime and present the experimental demonstration of the quantum character of the spatial fluctuations in the system. In addition to showing the presence of sub-shot noise fluctuations in the intensity difference, we demonstrate that the peak value of the normalized spatial correlations between signal and idler lies well above the line marking the boundary between the classical and the quantum domain. This effect is equivalent to the apparent violation of the Cauchy-Schwartz inequality, predicted by some of us years ago, which represents a spatial analogue of photon antibunching in time. Finally, we analyse numerically the transition from the quantum to the classical regime when the gain is increased and we emphasize the role of the inaccuracy in the determination of the symmetry center of the signal/idler pattern in the far-field plane.Comment: 21 pages, 11 figures, submitted to J. Mod. Opt. special issue on Quantum Imagin

    Detection of the ultranarrow temporal correlation of twin beams via sum-frequency generation

    Full text link
    We demonstrate the ultranarrow temporal correlation (6 fs full width half maximum) of twin beams generated by parametric down-conversion, by using the inverse process of sum-frequency generation. The result relies on an achromatic imaging of a huge bandwith of twin beams and on a careful control of their spatial degrees of freedom. The detrimental effects of spatial filtering and of imperfect imaging are shown toghether with the theoretical model used to describe the results

    Emergence of X-shaped spatiotemporal coherence in optical waves

    Get PDF
    Considering the problem of parametric nonlinear interaction, we report the experimental observation of electromagnetic waves characterized by an X-shaped spatiotemporal coherence; i.e., coherence is neither spatial nor temporal, but skewed along specific spatiotemporal trajectories. The application of the usual, purely spatial or temporal, measures of coherence would erroneously lead to the conclusion that the field is fully incoherent. Such hidden coherence has been identified owing to an innovative diagnostic technique based on simultaneous analysis of both the spatial and temporal spectra

    Three dimensional imaging of short pulses

    Full text link
    We exploit a slightly noncollinear second-harmonic cross-correlation scheme to map the 3D space-time intensity distribution of an unknown complex-shaped ultrashort optical pulse. We show the capability of the technique to reconstruct both the amplitude and the phase of the field through the coherence of the nonlinear interaction down to a resolution of 10 μ\mum in space and 200 fs in time. This implies that the concept of second-harmonic holography can be employed down to the sub-ps time scale, and used to discuss the features of the technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure
    corecore