9,159 research outputs found

    Pulsar extinction

    Get PDF
    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius

    An empirical Bayesian analysis applied to the globular cluster pulsar population

    Get PDF
    We describe an empirical Bayesian approach to determine the most likely size of an astronomical population of sources of which only a small subset are observed above some limiting flux density threshold. The method is most naturally applied to astronomical source populations at a common distance (e.g.,stellar populations in globular clusters), and can be applied even to populations where a survey detects no objects. The model allows for the inclusion of physical parameters of the stellar population and the detection process. As an example, we apply this method to the current sample of radio pulsars in Galactic globular clusters. Using the sample of flux density limits on pulsar surveys in 94 globular clusters published by Boyles et al., we examine a large number of population models with different dependencies. We find that models which include the globular cluster two-body encounter rate, Γ\Gamma, are strongly favoured over models in which this is not a factor. The optimal model is one in which the mean number of pulsars is proportional to exp(1.5logΓ)\exp(1.5 \log \Gamma). This model agrees well with earlier work by Hui et al. and provides strong support to the idea that the two-body encounter rate directly impacts the number of neutron stars in a cluster. Our model predicts that the total number of potentially observable globular cluster pulsars in the Boyles et al. sample is 1070700+1280^{+1280}_{-700}, where the uncertainties signify the 95% confidence interval. Scaling this result to all Galactic globular clusters, and to account for radio pulsar beaming, we estimate the total population to be 22801490+2720^{+2720}_{-1490}.Comment: 8 pages, 6 figures, 3 tables, corrected a few minor formatting errors which have also been submitted as an erratum to MNRA

    Small Engine Component Technology (SECT)

    Get PDF
    A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000

    The I in Autism:severity and social functioning in Autism is related to self-processing

    Get PDF
    It is well established that children with autism spectrum disorder (ASD) show impaired understanding of others and deficits within social functioning. However, it is still unknown whether self-processing is related to these impairments and to what extent self impacts social functioning and communication. Using an ownership paradigm, we show that children with ASD and chronological- and verbal-age-matched typically developing (TD) children do show the self-referential effect in memory. In addition, the self-bias was dependent on symptom severity and socio-communicative ability. Children with milder ASD symptoms were more likely to have a high self-bias, consistent with a low attention to others relative to self. In contrast, severe ASD symptoms were associated with reduced self-bias, consistent with an ‘absent-self’ hypothesis. These findings indicate that deficits in self-processing may be related to impairments in social cognition for those on the lower end of the autism spectrum

    Placental Flattening via Volumetric Parameterization

    Full text link
    We present a volumetric mesh-based algorithm for flattening the placenta to a canonical template to enable effective visualization of local anatomy and function. Monitoring placental function in vivo promises to support pregnancy assessment and to improve care outcomes. We aim to alleviate visualization and interpretation challenges presented by the shape of the placenta when it is attached to the curved uterine wall. To do so, we flatten the volumetric mesh that captures placental shape to resemble the well-studied ex vivo shape. We formulate our method as a map from the in vivo shape to a flattened template that minimizes the symmetric Dirichlet energy to control distortion throughout the volume. Local injectivity is enforced via constrained line search during gradient descent. We evaluate the proposed method on 28 placenta shapes extracted from MRI images in a clinical study of placental function. We achieve sub-voxel accuracy in mapping the boundary of the placenta to the template while successfully controlling distortion throughout the volume. We illustrate how the resulting mapping of the placenta enhances visualization of placental anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening .Comment: MICCAI 201

    Optical radiation from the Crab pulsar

    Get PDF
    Possible mechanisms for producing the optical radiation from the Crab pulsar are proposed and discussed. There are severe difficulties in interpreting the radiation as being produced by an incoherent process, whether it be synchrotron radiation, inverse-Compton radiation or curvature radiation. It is proposed therefore that radiation in the optical part of the spectrum is coherent. In the polar cap model, a small bunch of electrons and positrons forms near each primary electron as a result of the pair-production cascade process. Ambient electric fields give rise to energy separation, as a result of which either the electrons or positrons will dominate the radiation from each bunch. The roll-off in the infrared is ascribed to synchrotron absorption by electrons and positrons located between the surface of the star and the force-balance radius. Various consequences of this model, which may be subjected to observational test, are discussed

    Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter

    Get PDF
    Nuclear matter under the conditions of a supernova explosion unfolds into a rich variety of spatially structured phases, called nuclear pasta. We investigate the role of periodic network-like structures with negatively curved interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock simulations in periodic lattices. As the most prominent result, we identify for the first time the {\it single gyroid} network structure of cubic chiral I4123I4_123 symmetry, a well known configuration in nanostructured soft-matter systems, both as a dynamical state and as a cooled static solution. Single gyroid structures form spontaneously in the course of the dynamical simulations. Most of them are isomeric states. The very small energy differences to the ground state indicate its relevance for structures in nuclear pasta.Comment: 7 pages, 4 figure

    Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre.

    Get PDF
    Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N2)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre. The bacterial community and composition of diazotrophs associated with individual and bulk sinking particles was assessed using 16S rRNA and nifH gene amplicon sequencing. The bacterial community composition in bulk particles remained remarkably consistent throughout time and space while large variations of individually picked particles were observed. This difference suggests that unique biogeochemical conditions within individual particles may offer distinct ecological niches for specialized bacterial taxa. Compared to surrounding seawater, particle samples were enriched in different size classes of globally significant N2-fixing cyanobacteria including Trichodesmium, symbionts of diatoms, and the unicellular cyanobacteria Crocosphaera and UCYN-A. The particles also contained nifH gene sequences of diverse non-cyanobacterial diazotrophs suggesting that particles could be loci for N2 fixation by heterotrophic bacteria. The results demonstrate that diverse diazotrophs were present on particles and that new N may thereby be directly exported from surface waters on sinking particles

    On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy

    Get PDF
    Titanium is commonly added to nickel superalloys but has a well-documented detrimental effect on oxidation resistance. The present work constitutes the first atomistic-scale quantitative measurements of grain boundary and bulk compositions in the oxide scale of a current generation polycrystalline nickel superalloy performed through atom probe tomography. Titanium was found to be particularly detrimental to oxide scale growth through grain boundary diffusion
    corecore