9,159 research outputs found
Pulsar extinction
Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius
An empirical Bayesian analysis applied to the globular cluster pulsar population
We describe an empirical Bayesian approach to determine the most likely size
of an astronomical population of sources of which only a small subset are
observed above some limiting flux density threshold. The method is most
naturally applied to astronomical source populations at a common distance
(e.g.,stellar populations in globular clusters), and can be applied even to
populations where a survey detects no objects. The model allows for the
inclusion of physical parameters of the stellar population and the detection
process. As an example, we apply this method to the current sample of radio
pulsars in Galactic globular clusters. Using the sample of flux density limits
on pulsar surveys in 94 globular clusters published by Boyles et al., we
examine a large number of population models with different dependencies. We
find that models which include the globular cluster two-body encounter rate,
, are strongly favoured over models in which this is not a factor. The
optimal model is one in which the mean number of pulsars is proportional to
. This model agrees well with earlier work by Hui et al.
and provides strong support to the idea that the two-body encounter rate
directly impacts the number of neutron stars in a cluster. Our model predicts
that the total number of potentially observable globular cluster pulsars in the
Boyles et al. sample is 1070, where the uncertainties signify
the 95% confidence interval. Scaling this result to all Galactic globular
clusters, and to account for radio pulsar beaming, we estimate the total
population to be 2280.Comment: 8 pages, 6 figures, 3 tables, corrected a few minor formatting errors
which have also been submitted as an erratum to MNRA
Small Engine Component Technology (SECT)
A study of small gas turbine engines was conducted to identify high payoff technologies for year-2000 engines and to define companion technology plans. The study addressed engines in the 186 to 746 KW (250 to 1000 shp) or equivalent thrust range for rotorcraft, commuter (turboprop), cruise missile (turbojet), and APU applications. The results show that aggressive advancement of high payoff technologies can produce significant benefits, including reduced SFC, weight, and cost for year-2000 engines. Mission studies for these engines show potential fuel burn reductions of 22 to 71 percent. These engine benefits translate into reductions in rotorcraft and commuter aircraft direct operating costs (DOC) of 7 to 11 percent, and in APU-related DOCs of 37 to 47 percent. The study further shows that cruise missile range can be increased by as much as 200 percent (320 percent with slurry fuels) for a year-2000 missile-turbojet system compared to a current rocket-powered system. The high payoff technologies were identified and the benefits quantified. Based on this, technology plans were defined for each of the four engine applications as recommended guidelines for further NASA research and technology efforts to establish technological readiness for the year 2000
The I in Autism:severity and social functioning in Autism is related to self-processing
It is well established that children with autism spectrum disorder (ASD) show impaired understanding of others and deficits within social functioning. However, it is still unknown whether self-processing is related to these impairments and to what extent self impacts social functioning and communication. Using an ownership paradigm, we show that children with ASD and chronological- and verbal-age-matched typically developing (TD) children do show the self-referential effect in memory. In addition, the self-bias was dependent on symptom severity and socio-communicative ability. Children with milder ASD symptoms were more likely to have a high self-bias, consistent with a low attention to others relative to self. In contrast, severe ASD symptoms were associated with reduced self-bias, consistent with an ‘absent-self’ hypothesis. These findings indicate that deficits in self-processing may be related to impairments in social cognition for those on the lower end of the autism spectrum
Placental Flattening via Volumetric Parameterization
We present a volumetric mesh-based algorithm for flattening the placenta to a
canonical template to enable effective visualization of local anatomy and
function. Monitoring placental function in vivo promises to support pregnancy
assessment and to improve care outcomes. We aim to alleviate visualization and
interpretation challenges presented by the shape of the placenta when it is
attached to the curved uterine wall. To do so, we flatten the volumetric mesh
that captures placental shape to resemble the well-studied ex vivo shape. We
formulate our method as a map from the in vivo shape to a flattened template
that minimizes the symmetric Dirichlet energy to control distortion throughout
the volume. Local injectivity is enforced via constrained line search during
gradient descent. We evaluate the proposed method on 28 placenta shapes
extracted from MRI images in a clinical study of placental function. We achieve
sub-voxel accuracy in mapping the boundary of the placenta to the template
while successfully controlling distortion throughout the volume. We illustrate
how the resulting mapping of the placenta enhances visualization of placental
anatomy and function. Our code is freely available at
https://github.com/mabulnaga/placenta-flattening .Comment: MICCAI 201
Optical radiation from the Crab pulsar
Possible mechanisms for producing the optical radiation from the Crab pulsar are proposed and discussed. There are severe difficulties in interpreting the radiation as being produced by an incoherent process, whether it be synchrotron radiation, inverse-Compton radiation or curvature radiation. It is proposed therefore that radiation in the optical part of the spectrum is coherent. In the polar cap model, a small bunch of electrons and positrons forms near each primary electron as a result of the pair-production cascade process. Ambient electric fields give rise to energy separation, as a result of which either the electrons or positrons will dominate the radiation from each bunch. The roll-off in the infrared is ascribed to synchrotron absorption by electrons and positrons located between the surface of the star and the force-balance radius. Various consequences of this model, which may be subjected to observational test, are discussed
Appearance of the Single Gyroid Network Phase in Nuclear Pasta Matter
Nuclear matter under the conditions of a supernova explosion unfolds into a
rich variety of spatially structured phases, called nuclear pasta. We
investigate the role of periodic network-like structures with negatively curved
interfaces in nuclear pasta structures, by static and dynamic Hartree-Fock
simulations in periodic lattices. As the most prominent result, we identify for
the first time the {\it single gyroid} network structure of cubic chiral
symmetry, a well known configuration in nanostructured soft-matter
systems, both as a dynamical state and as a cooled static solution. Single
gyroid structures form spontaneously in the course of the dynamical
simulations. Most of them are isomeric states. The very small energy
differences to the ground state indicate its relevance for structures in
nuclear pasta.Comment: 7 pages, 4 figure
Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre.
Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N2)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre. The bacterial community and composition of diazotrophs associated with individual and bulk sinking particles was assessed using 16S rRNA and nifH gene amplicon sequencing. The bacterial community composition in bulk particles remained remarkably consistent throughout time and space while large variations of individually picked particles were observed. This difference suggests that unique biogeochemical conditions within individual particles may offer distinct ecological niches for specialized bacterial taxa. Compared to surrounding seawater, particle samples were enriched in different size classes of globally significant N2-fixing cyanobacteria including Trichodesmium, symbionts of diatoms, and the unicellular cyanobacteria Crocosphaera and UCYN-A. The particles also contained nifH gene sequences of diverse non-cyanobacterial diazotrophs suggesting that particles could be loci for N2 fixation by heterotrophic bacteria. The results demonstrate that diverse diazotrophs were present on particles and that new N may thereby be directly exported from surface waters on sinking particles
On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy
Titanium is commonly added to nickel superalloys but has a well-documented
detrimental effect on oxidation resistance. The present work constitutes the
first atomistic-scale quantitative measurements of grain boundary and bulk
compositions in the oxide scale of a current generation polycrystalline nickel
superalloy performed through atom probe tomography. Titanium was found to be
particularly detrimental to oxide scale growth through grain boundary
diffusion
- …
