647 research outputs found
The impact of broadband in schools
The report reviews evidence for the impact of broadband in English schools, exploring; Variations in provision in level of broadband connectivity; Links between the level of broadband activity and nationally accessible performance data; Aspects of broadband connectivity and the school environment that contribute to better outcomes for pupils and teachers; Academic and motivational benefits associated with educational uses of this technology
Recommended from our members
Tablet PCs in schools: Case study report: A report for Becta by the Open University
The publication provides an analysis of twelve case studies involving schools in England that were using Tablet PCs. The analysis is complemented by brief individual reports describing aspects of how each of these schools was using Tablet PCs
Different iron storage strategies among bloom-forming diatoms
Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115(52), (2018): E12275-E12284. doi: 10.1073/pnas.1805243115.Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms, Pseudo-nitzschia were favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile, Chaetoceros and Thalassiosira gene expression aligned with vacuolar storage mechanisms. Pseudo-nitzschia also showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.We thank the captain and crew of the R/V Melville and the CCGS J. P. Tully as well as the participants of the IRNBRU (MV1405) cruise for the California-based data, particularly K. Ellis [University of North Carolina (UNC)], T. Coale (University of California, San Diego), F. Kuzminov (Rutgers), H. McNair [University of California, Santa Barbara (UCSB)], and J. Jones (UCSB). W. Burns (UNC), S. Haines (UNC), and S. Bargu (Louisiana State University) assisted with sample processing and analysis. This work was funded by the National Science Foundation Grants OCE-1334935 (to A.M.), OCE-1334632 (to B.S.T.), OCE-1333929 (to K.T.), OCE-1334387 (to M.A.B.), OCE-1259776 (to K.W.B), and DGE-1650116 (Graduate Research Fellowship to R.H.L).2019-06-1
Mediation in the Law Curriculum
Cited by Lord Neuberger in ‘Educating Future Mediators’ at the 4th Civil Mediation Council National Conference, May 201
The acceleration of dissolved cobalt's ecological stoichiometry due to biological uptake, remineralization, and scavenging in the Atlantic Ocean
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 4637-4662, doi:10.5194/bg-14-4637-2017.The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become ∼ 10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of ∼ 400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.This work was funded by the National Science
Foundation as part of the US GEOTRACES North Atlantic Zonal
Transect program under grants OCE-0928414 and OCE-1435056
(to Mak A. Saito), OCE-0928289 (to Benjamin S. Twining),
OCE-0963026 (to Phoebe Lam) and support from the Gordon and
Betty Moore Foundation (3782 to Mak A. Saito)
Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest
International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba
The Effects of Cocaine on Different Redox Forms of Cysteine and Homocysteine, and on Labile, Reduced Sulfur in the Rat Plasma Following Active versus Passive Drug Injections
Received: 28 November 2012 / Revised: 19 April 2013 / Accepted: 6 May 2013 / Published online: 16 May 2013
The Author(s) 2013. This article is published with open access at Springerlink.comThe aim of the present studies was to evaluate
cocaine-induced changes in the concentrations of different
redox forms of cysteine (Cys) and homocysteine (Hcy),
and products of anaerobic Cys metabolism, i.e., labile,
reduced sulfur (LS) in the rat plasma. The above-mentioned
parameters were determined after i.p. acute and
subchronic cocaine treatment as well as following i.v.
cocaine self-administration using the yoked procedure.
Additionally, Cys, Hcy, and LS levels were measured
during the 10-day extinction training in rats that underwent
i.v. cocaine administration. Acute i.p. cocaine treatment
increased the total and protein-bound Hcy contents,
decreased LS, and did not change the concentrations of Cys
fractions in the rat plasma. In turn, subchronic i.p. cocaine administration significantly increased free Hcy and lowered
the total and protein-bound Cys concentrations while
LS level was unchanged. Cocaine self-administration
enhanced the total and protein-bound Hcy levels, decreased
LS content, and did not affect the Cys fractions. On the
other hand, yoked cocaine infusions did not alter the concentration
of Hcy fractions while decreased the total and
protein-bound Cys and LS content. This extinction training
resulted in the lack of changes in the examined parameters
in rats with a history of cocaine self-administration while in
the yoked cocaine group an increase in the plasma free Cys
fraction and LS was seen. Our results demonstrate for the
first time that cocaine does evoke significant changes in
homeostasis of thiol amino acids Cys and Hcy, and in some
products of anaerobic Cys metabolism, which are dependent
on the way of cocaine administration
Human Wildlife Conflict in Ireland: perception versus reality
While concerns over the impact of predators within a human landscape are justified e.g. predation of livestock and other protected species, determining whether perception of loss or impact, - within a naïve human population (i.e. one with no historic exposure to predators) - matches reality is essential to ensure appropriate management actions are employed. The goal of this project is to measure the impact of wild carnivores in Ireland on human interests and compare it to the perception of impact among human populations. This will be conducted via a combination of social surveys, dietary analysis and population assessments, which will culminate in the production of practical management recommendations for government and affected stakeholders, towards practical management actions. This will be essential moving forward given the increasing desire for rewilding and re-introduction of large mammalian predators on these shores. This poster will set out the aims of this PhD project over the next 3 years and encourage interaction and feedback from the conference delegates
Recommended from our members
NP3 – New Purposes, New Practices, New Pedagogy: Meta-analysis report
This is the main report of the findings of the NP3 project, which looked at children's use of ICT outside school and the extent to which this influenced pedagogy inside primary schools
- …
