2,054 research outputs found
Menopausia, el inicio del envejecimiento de las mujeres chilenas. Un estudio cualitativo
Indexación: Scopus.Objective. To develop the meaning of menopause of a group of post-menopausal women and their relationship with aging. Methods. Qualitative descriptive study on 15 Chilean women that completed a taped face-to-face in depth interview that were interpreted according to Krippendorff. Results. A qualitative content analysis revealed the presence of two themes: (a) Cessation of women's reproductive stage and (b) a life transition to aging. Conclusion. Women perceived their menopause as the beginning of aging focusing on the end of fertility and the social connotation that this new role implies. Feeling old 10 years before the customary beginning of old age is an important starting point to be incorporated in women's health education.http://ref.scielo.org/x7bfh
Increase of the Energy Necessary to Probe Ultraviolet Theories Due to the Presence of a Strong Magnetic Field
We use the gauge gravity correspondence to study the renormalization group
flow of a double trace fermionic operator in a quark-gluon plasma subject to
the influence of a strong magnetic field and compare it with the results for
the case at zero temperature and no magnetic field, where the flow between two
fixed points is observed. Our results show that the energy necessary to access
the physics of the ultraviolet theory increases with the intensity of the
magnetic field under which the processes happen. We provide arguments to
support that this increase is scheme independent, and to exhibit further
evidence we do a very simple calculation showing that the dimensional reduction
expected in the gauge theory in this scenario is effective up to an energy
scale that grows with the strength of such a background field. We also show
that independently of the renormalization scheme, the coupling of the double
trace operators in the ultraviolet fixed point increases with the intensity of
the background field. These effects combined can change both, the processes
that are expected to be involved in a collision experiment at a given energy
and the azimuthal anisotropy of the measurements resulting of them.Comment: 23 pages, 10 figures. Added section about renormalization scheme
independenc
An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement
This paper presents a modified grand canonical ensemble which provides a new
simple and efficient scheme to study few-body fluid-like inhomogeneous systems
under confinement. The new formalism is implemented to investigate the exact
thermodynamic properties of a hard sphere (HS) fluid-like system with up to
three particles confined in a spherical cavity. In addition, the partition
function of this system was used to analyze the surface thermodynamic
properties of the many-HS system and to derive the exact curvature dependence
of both the surface tension and adsorption in powers of the density. The
expressions for the surface tension and the adsorption were also obtained for
the many- HS system outside of a fixed hard spherical object. We used these
results to derive the dependence of the fluid-substrate Tolman length up to
first order in density.Comment: 6 figures. The paper includes new exact results about hard spheres
fluid-like system
Fluids confined in wedges and by edges: Virial series for the line-thermodynamic properties of hard spheres
This work is devoted to analyze the relation between the thermodynamic properties of a confined fluid and the shape of its confining vessel. Recently, new insights in this topic were found through the study of cluster integrals for inhomogeneous fluids that revealed the dependence on the vessel shape of the low density behavior of the system. Here, the statistical mechanics and thermodynamics of fluids confined in wedges or by edges is revisited, focusing on their cluster integrals. In particular, the well known hard sphere fluid, which was not studied in this framework so far, is analyzed under confinement and its thermodynamic properties are analytically studied up to order two in the density. Furthermore, the analysis is extended to the confinement produced by a corrugated wall. These results rely on the obtained analytic expression for the second cluster integral of the confined hard sphere system as a function of the opening dihedral angle 0 < β < 2π. It enables a unified approach to both wedges and edges.Fil: Urrutia, Ignacio. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Acute Malnutrition and Under-5 Mortality, Northeastern Part of India.
We assessed the prevalence of childhood acute malnutrition and under-five mortality rate (U5MR) in Darbhanga district, India, using a two-stage 49-cluster household survey. A total of 1379 households comprising 8473 people were interviewed. During a 90-day recall period, U5MR was 0.5 [95% confidence interval (CI), 0.2-1.4] per 10 000 per day. The prevalence of global acute malnutrition among 1405 children aged 6-59 months was 15.4% (NCHS) and 19.4% (2006 WHO references). This survey suggests that in Darbhanga district, the population is in a borderline food crisis with few food resources. Appropriate strategies should be developed to improve the overall nutritional and health status of children
Highly charged ions: optical clocks and applications in fundamental physics
Recent developments in frequency metrology and optical clocks have been based
on electronic transitions in atoms and singly charged ions as references. These
systems have enabled relative frequency uncertainties at a level of a few parts
in . This accomplishment not only allows for extremely accurate time
and frequency measurements, but also to probe our understanding of fundamental
physics, such as variation of fundamental constants, violation of the local
Lorentz invariance, and forces beyond the Standard Model of Physics. In
addition, novel clocks are driving the development of sophisticated technical
applications. Crucial for applications of clocks in fundamental physics are a
high sensitivity to effects beyond the Standard Model and Einstein's Theory of
Relativity and a small frequency uncertainty of the clock. Highly charged ions
offer both. They have been proposed as highly accurate clocks, since they
possess optical transitions which can be extremely narrow and less sensitive to
external perturbations compared to current atomic clock species. The selection
of highly charged ions in different charge states offers narrow transitions
that are among the most sensitive ones for a change in the fine-structure
constant and the electron-to-proton mass ratio, as well as other new physics
effects. Recent advances in trapping and sympathetic cooling of highly charged
ions will in the future enable high accuracy optical spectroscopy. Progress in
calculating the properties of selected highly charged ions has allowed the
evaluation of systematic shifts and the prediction of the sensitivity to the
"new physics" effects. This article reviews the current status of theory and
experiment in the field.Comment: 53 pages, 16 figures, submitted to RM
Mean properties and Free Energy of a few hard spheres confined in a spherical cavity
We use analytical calculations and event-driven molecular dynamics
simulations to study a small number of hard sphere particles in a spherical
cavity. The cavity is taken also as the thermal bath so that the system
thermalizes by collisions with the wall. In that way, these systems of two,
three and four particles, are considered in the canonical ensemble. We
characterize various mean and thermal properties for a wide range of number
densities. We study the density profiles, the components of the local pressure
tensor, the interface tension, and the adsorption at the wall. This spans from
the ideal gas limit at low densities to the high-packing limit in which there
are significant regions of the cavity for which the particles have no access,
due the conjunction of excluded volume and confinement. The contact density and
the pressure on the wall are obtained by simulations and compared to exact
analytical results. We also obtain the excess free energy for N=4, by using a
simulated-assisted approach in which we combine simulation results with the
knowledge of the exact partition function for two and three particles in a
spherical cavity.Comment: 11 pages, 9 figures and two table
Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications
In-vacuo cryogenic environments are ideal for applications requiring both low
temperatures and extremely low particle densities. This enables reaching long
storage and coherence times for example in ion traps, essential requirements
for experiments with highly charged ions, quantum computation, and optical
clocks. We have developed a novel cryostat continuously refrigerated with a
pulse-tube cryocooler and providing the lowest vibration level reported for
such a closed-cycle system with 1 W cooling power for a <5 K experiment. A
decoupling system suppresses vibrations from the cryocooler by three orders of
magnitude down to a level of 10 nm peak amplitudes in the horizontal plane.
Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an
experimental chamber, mounted on an optical table, to the cryocooler through a
vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long
pendulum allows installation of the cryocooler in a separate, acoustically
isolated machine room. In the laser laboratory, we measured the residual
vibrations using an interferometric setup. The positioning of the 4 K elements
is reproduced to better than a few micrometer after a full thermal cycle to
room temperature. Extreme high vacuum on the mbar level is achieved.
In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a
setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB)
for a next-generation optical clock experiment using highly charged ions
Two hard spheres in a pore: Exact Statistical Mechanics for different shaped cavities
The Partition function of two Hard Spheres in a Hard Wall Pore is studied
appealing to a graph representation. The exact evaluation of the canonical
partition function, and the one-body distribution function, in three different
shaped pores are achieved. The analyzed simple geometries are the cuboidal,
cylindrical and ellipsoidal cavities. Results have been compared with two
previously studied geometries, the spherical pore and the spherical pore with a
hard core. The search of common features in the analytic structure of the
partition functions in terms of their length parameters and their volumes,
surface area, edges length and curvatures is addressed too. A general framework
for the exact thermodynamic analysis of systems with few and many particles in
terms of a set of thermodynamic measures is discussed. We found that an exact
thermodynamic description is feasible based in the adoption of an adequate set
of measures and the search of the free energy dependence on the adopted measure
set. A relation similar to the Laplace equation for the fluid-vapor interface
is obtained which express the equilibrium between magnitudes that in extended
systems are intensive variables. This exact description is applied to study the
thermodynamic behavior of the two Hard Spheres in a Hard Wall Pore for the
analyzed different geometries. We obtain analytically the external work, the
pressure on the wall, the pressure in the homogeneous zone, the wall-fluid
surface tension, the line tension and other similar properties
- …
