181 research outputs found

    Заболевание тазобедренного сустава у детей с наследственной предрасположенностью: концептуальная модель

    Get PDF
    На основе принципов интегративной медицины, системного подхода с использованием концептуально−логического моделирования разработана единая система представлений о заболеваниях тазобедренного сустава у детей с наследственной предрасположенностью. Показано, что предлагаемый интегративный подход может служить основой для разработки диагностических и прогностических критериев развития суставов и проведения патогенетического хирургического лечения, направленного на ликвидацию или существенное снижение частоты формирования диспластического коксартроза.Based on the principles of integrative medicine, systemic approach with the use of concept of logical modelling, a uniform system of concepts about the diseases of the hip joint in children with hereditary susceptibility was worked out. It was shown that the suggested integrative approach can be used for working out diagnostic and prognostic criteria of joint development and performing pathogenetic surgery aimed at elimination or reduction in the frequency of forming dysplastic coxarthrosis

    ELECTRIC-FIELD-GRADIENT CALCULATIONS ON CADMIUM IN CADMIUM-HELIUM VACANCY CLUSTERS IN TUNGSTEN

    Get PDF
    Electric-field gradients (EFG) at the position of the cadmium atom in low-symmetry CdVnHem clusters in tungsten were calculated with the augmented spherical wave method. The results agreed within 70% with experimental values. It is observed that lattice relaxation has a large effect on both the quadrupole frequency omega(0) and the asymmetry parameter eta. The value of eta for the unrelaxed dusters CdV2 and CdV3He2 are not equal to 1.0, as predicted by the point charge model. The cluster CdV2He2 has a temperature-dependent EFG with a transition temperature of about 100 K. The same holds for CdV3He4, but in this case there are two transitions, at abut 170 and 250 K, respectively

    Pest categorisation of Ceroplastes rubens

    Get PDF
    The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Ceroplastes rubens Maskell (Hemiptera: Coccidae), following the commodity risk assessments of Acer palmatum plants grafted on A. davidii and Pinus parviflora bonsai plants grafted on P. thunbergii from China, in which C. rubens was identified as a pest of possible concern to the European Union (EU). The pest, which is commonly known as the pink, red or ruby wax scale, originates in Africa and is highly polyphagous attacking plants from more than 193 genera in 84 families. It has been present in Germany since 2010 in a single tropical glasshouse. It is known to attack primarily tropical and subtropical plants, but also other host plants commonly found in the EU, such as Malus sylvestris, Prunus spp., Pyrus spp. and ornamentals. It is considered an important pest of Citrus spp. The pink wax scale reproduces mainly parthenogenetically, and it has one or two generations per year. Fecundity ranges from 5 to 1178 eggs. Crawlers settle usually on young twigs and later stages are sessile. All life stages of C. rubens egest honeydew on which sooty mould grows. Host availability and climate suitability suggest that parts of the EU would be suitable for establishment. Plants for planting and cut branches provide the main pathways for entry. Crawlers could spread over short distances naturally through wind, animals, humans or machinery. C. rubens could be dispersed more rapidly and over long distances via infested plants for planting for trade. The introduction of C. rubens into the EU could lead to outbreaks causing damage to orchards, amenity ornamental trees and shrubs. Phytosanitary measures are available to inhibit the entry and spread of this species. C. rubens satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest

    Pest categorisation of Malacosoma parallela

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Malacosoma parallela (Staudinger) (Lepidoptera: Lasiocampidae) for the territory of the European Union, following commodity risk assessments of Berberis thunbergii, Malus domestica, Prunus persica and P. dulcis plants for planting from Türkiye, in which M. parallela came to attention as of possible concern. M. parallela is commonly known as the mountain ring silk moth and is a polyphagous leaf-eating pest in west-central Asia, primarily feeding on deciduous trees and shrubs, and known to cause serious damage to Malus, Prunus, and Quercus species. It is found at a range of altitudes from 130 m to 3000 m although most common above 1000 m. It is a univoltine species. Eggs are laid in masses on twigs and branches in the summer and larvae hatch the following spring to feed on buds and fresh leaves. Host plants can be completely defoliated. Plants for planting and cut branches provide pathways for entry, especially if infested with egg masses. Host availability and climate suitability suggest that parts of the EU would be suitable for establishment. Adults can fly and the pest could spread naturally within the EU although adults only live for a few days. Faster and more extensive spread is therefore more likely via egg masses moved on plants for planting. The introduction of M. parallela into the EU could lead to outbreaks causing damage to deciduous trees and shrubs in forests and orchards. Phytosanitary measures are available to inhibit the entry and spread of this species. M. parallela satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest

    Pest categorisation of Coniella castaneicola

    Get PDF
    The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Coniella castaneicola (Ellis & Everh) Sutton, following commodity risk assessments of Acer campestre, A. palmatum, A. platanoides, A. pseudoplatanus, Quercus petraea and Q. robur plants from the UK, in which C. castaneicola was identified as a pest of possible concern to the EU. When first described, Coniella castaneicola was a clearly defined fungus of the family Schizoparmaceae, but due to lack of a curated type-derived DNA sequence, current identification based only on DNA sequence is uncertain and taxa previously reported to be this fungus based on molecular identification must be confirmed. The uncertainty on the reported identification of this species translates into uncertainty on all the sections of this categorisation. The fungus has been reported on several plant species associated with leaf spots, leaf blights and fruit rots, and as an endophyte in asymptomatic plants. The species is reported from North and South America, Africa, Asia, non-EU Europe and Oceania. Coniella castaneicola is not known to occur in the EU. However, there is a key uncertainty on its presence and geographical distribution worldwide and in the EU due to its endophytic nature, the lack of systematic surveys and possible misidentifications. Coniella castaneicola is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. Plants for planting, fresh fruits and soil and other growing media associated with infected plant debris are the main pathways for its entry into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the fungus. Based on the scarce information available, the introduction and spread of C. castaneicola in the EU is not expected to cause substantial impacts, with a key uncertainty. Phytosanitary measures are available to prevent its introduction and spread in the EU. Because of lack of documented impacts, Coniella castaneicola does not satisfy all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest

    Pest categorisation of Pyrrhoderma noxium

    Get PDF
    Following the commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) from China performed by EFSA, the EFSA Plant Health Panel performed a pest categorisation of Pyrrhoderma noxium, a clearly defined plant pathogenic basidiomycete fungus of the order Hymenochaetales and the family Hymenochaetaceae. The pathogen is considered as opportunistic and has been reported on a wide range of hosts, mainly broad-leaved and coniferous woody plants, causing root rots. In addition, the fungus was reported to live saprophytically on woody substrates and was isolated as an endophyte from a few plant species. This pest categorisation focuses on the hosts that are relevant for the EU (e.g. Citrus, Ficus, Pinus, Prunus, Pyrus, Quercus and Vitis vinifera). Pyrrhoderma noxium is present in Africa, Central and South America, Asia and Oceania. It has not been reported in the EU. Pyrrhoderma noxium is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting (excluding seeds), bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact in parts of the territory where hosts are present. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Pyrrhoderma noxium satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest

    Pest categorisation of Pestalotiopsis microspora

    Get PDF
    Following an EFSA commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) imported from China, the EFSA Plant Health Panel performed a pest categorisation of Pestalotiopsis microspora, a clearly defined plant pathogenic fungus of the family Pestalotiopsidaceae. The pathogen was reported on a wide range of monocotyledonous, dicotyledonous and gymnosperms, either cultivated or wild plant species, causing various symptoms such as leaf spot, leaf blight, scabby canker, fruit spot, pre- and post-harvest fruit rot and root rot. In addition, the fungus was reported as an endophyte on a wide range of asymptomatic plant species. This pest categorisation focuses on the hosts that are relevant for the EU and for which there is robust evidence that the pathogen was formally identified by a combination of morphology, pathogenicity and multilocus sequencing analyses. Pestalotiopsis microspora was reported in Africa, North, Central and South America, Asia and Oceania. In the EU, it was reported in the Netherlands. There is a key uncertainty on the geographical distribution of P. microspora worldwide and in the EU, because of the endophytic nature of the fungus, the lack of surveys, and because in the past, when molecular tools were not fully developed, the pathogen might have been misidentified as other Pestalotiopsis species or other members of the Pestalodiopsidaceae family based on morphology and pathogenicity tests. Pestalotiopsis microspora is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting, fresh fruits, bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact where susceptible hosts are grown. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Unless the restricted distribution in the EU is disproven, Pestalotiopsis microspora satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest

    Pest categorisation of Pratylenchus loosi

    Get PDF
    Following the EFSA commodity risk assessment of Malus domestica plants imported from Türkiye into the EU, the EFSA Panel on Plant Health performed a pest categorisation of Pratylenchus loosi (Nematoda: Pratylenchidae) for the EU. Pratylenchus loosi belongs to the order Rhabditida, subfamily Pratylenchidae. This nematode is not known to be present in the EU. The species is not included in the EU Commission Implementing Regulation 2019/2072. The pest occurs primarily in tropical, subtropical and warm temperate areas. It is widely distributed in Asian countries, with tea plants (Camellia sinensis) as the main host. The pest was reported from more than 60 plant species, but reports from hosts other than C. sinensis, e.g. citrus (Citrus spp.) and banana (Musa spp.), are associated with high uncertainty due to doubtful pest identification. Morphological and molecular methods are available for the identification of the pest. Pathways of entry are host plants for planting except seeds, as well as soil attached to plants for planting, machinery or footwear. Soil import to the EU is prohibited from third countries. The climatic preferences of P. loosi are compatible with the microclimatic conditions occurring in the areas of the EU where tea is grown outside. The impact of the nematode is primarily known for Asian countries, where it is a devastating pathogen on tea plants, but there is a key uncertainty on impacts on hosts other than tea. Considering the strong pathogenicity of the pest, its establishment in tea producing areas would have negative consequences for tea producers. Therefore, the Panel concludes that P. loosi satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest

    Pest categorisation of Monema flavescens

    Get PDF
    The EFSA Panel on Plant Health performed a pest categorisation of Monema flavescens (Lepidoptera, Limacodidae), following the commodity risk assessment of Acer palmatum plants grafted on A. davidii from China, in which M. flavescens was identified as a pest of possible concern to the European Union. This species can be identified by morphological taxonomic keys and by barcoding. The adults of the overwintering generation emerge from late June to late August. The eggs are laid in groups on the underside of the host-plant leaves, on which the larvae feed throughout their six to eight larval instars. Pupation occurs in ovoid cocoons at the junction between twigs and branches, or on the trunk. Overwintering occurs as fully grown larvae or prepupae in their cocoon. There are one or two generations per year. M. flavescens is polyphagous and feeds on broadleaves; it has been reported on 51 plant species belonging to 24 families. It mainly occurs in Asia (Bhutan, China, the Democratic People's Republic of Korea, Japan, Nepal, the Republic of Korea), Russia (Eastern Siberia) and Taiwan. It is also present in the USA (Massachusetts). The pest's flight capacities are unknown. The main pathway for entry and spread is plants for planting with cocoons attached. This is partially closed by prohibition of some hosts. In several EU member states climatic conditions are conducive for establishment and many host plants are widespread. Introduction of M. flavescens may result in defoliations influencing tree health and forest diversity. The caterpillars also have urticating spines affecting human health. Phytosanitary measures are available to reduce the likelihood of entry, establishment and spread, and there is a definite potential for classical biological control. Recognising that natural enemies prevent M. flavescens being regarded as a pest in Asia, there is uncertainty regarding the magnitude of potential impact in EU depending on the influence of natural enemies. All criteria assessed by EFSA for consideration as a potential quarantine pest are met
    corecore