141 research outputs found
Spontaneous bowel perforation due to norovirus: a case report
Norovirus is the leading cause of epidemic gastroenteritis worldwide but the disease is usually self-limiting and generally only causes serious health problems in the young, elderly and immunocompromised. The authors report a case of bowel perforation in an elderly Caucasian lady with confirmed infection with Norovirus genogroup II and no other presumptive cause. To the authors' knowledge this is the first such case of bowel perforation due to Norovirus. Viral gastroenteritis should be considered in the list of differentials when no obvious cause of bowel perforation can be identified to minimise morbidity and mortality
A blind accuracy assessment of computer-modeled forensic facial reconstruction using computed tomography data from live subjects.
A computer modeling system for facial reconstruction has been developed that employs a touch-based application to create anatomically accurate facial models focusing on skeletal detail. This article discusses the advantages and disadvantages of the system and illustrates its accuracy and reliability with a blind study using computed tomography (CT) data of living individuals. Three-dimensional models of the skulls of two white North American adults (one male, one female) were imported into the computer system. Facial reconstructions were produced by two practitioners following the Manchester method. Two posters were produced, each including a face pool of five surface model images and the facial reconstruction. The face pool related to the sex, age, and ethnic group of the target individual and included the surface model image of the target individual. Fifty-two volunteers were asked to choose the face from the face pool that most resembled each reconstruction. Both reconstructions received majority percentage hit rates that were at least 50% greater than any other face in the pool. The combined percentage hit rate was 50% above chance (70%). A quantitative comparison of the facial morphology between the facial reconstructions and the CT scan models of the subjects was carried out using Rapidform(™) 2004 PP2-RF4. The majority of the surfaces of the facial reconstructions showed less than 2.5 mm error and 90% of the male face and 75% of the female face showed less than 5 mm error. Many of the differences between the facial reconstructions and the facial scans were probably the result of positional effects caused during the CT scanning procedure, especially on the female subject who had a fatter face than the male subject. The areas of most facial reconstruction error were at the ears and nasal tip
Pseudoaneurysm of the left ventricle following apical approach TAVI
Symptomatic severe aortic stenosis carries a two year survival of only 50%. However many patients are unsuitable for conventional aortic valve replacement as they are considered too high risk due to significant co-morbidities. Transcatheter Aortic Valve Implantation (TAVI) offers a viable alternative for this high risk patient group, either by the femoral or apical route. This article reports a case of a pseudoaneurysm of the left ventricle following an apical approach TAVI in an elderly lady with severe aortic stenosis. To our knowledge pseduoaneuryms of the left ventricle have been reported infrequently in the literature and has yet to be established as a recognised complication of TAVI
Effects of late, repetitive remote ischaemic conditioning on myocardial strain in patients with acute myocardial infarction
Late, repetitive or chronic remote ischaemic conditioning (CRIC) is a potential cardioprotective strategy against adverse remodelling following ST-segment elevation myocardial infarction (STEMI). In the randomised Daily Remote Ischaemic Conditioning Following Acute Myocardial Infarction (DREAM) trial, CRIC following primary percutaneous coronary intervention (P-PCI) did not improve global left ventricular (LV) systolic function. A post-hoc analysis was performed to determine whether CRIC improved regional strain. All 73 patients completing the original trial were studied (38 receiving 4 weeks' daily CRIC, 35 controls receiving sham conditioning). Patients underwent cardiovascular magnetic resonance at baseline (5-7 days post-STEMI) and after 4 months, with assessment of LV systolic function, infarct size and strain (longitudinal/circumferential, in infarct-related and remote territories). At both timepoints, there were no significant between-group differences in global indices (LV ejection fraction, infarct size, longitudinal/circumferential strain). However, regional analysis revealed a significant improvement in longitudinal strain in the infarcted segments of the CRIC group (from - 16.2 ± 5.2 at baseline to - 18.7 ± 6.3 at follow up, p = 0.0006) but not in corresponding segments of the control group (from - 15.5 ± 4.0 to - 15.2 ± 4.7, p = 0.81; for change: - 2.5 ± 3.6 versus + 0.3 ± 5.6, respectively, p = 0.027). In remote territories, there was a lower increment in subendocardial circumferential strain in the CRIC group than in controls (- 1.2 ± 4.4 versus - 2.5 ± 4.0, p = 0.038). In summary, CRIC following P-PCI for STEMI is associated with improved longitudinal strain in infarct-related segments, and an attenuated increase in circumferential strain in remote segments. Further work is needed to establish whether these changes may translate into a reduced incidence of adverse remodelling and clinical events. Clinical Trial Registration: http://clinicaltrials.gov/show/NCT01664611
A computerized craniofacial reconstruction method for an unidentified skull based on statistical shape models
Craniofacial reconstruction (CFR) has been widely used to produce the facial appearance of an unidentified skull in the realm of forensic science. Many studies have indicated that the computerized CFR approach is fast, flexible, consistent and objective in comparison to the traditional manual CFR approach. This paper presents a computerized CFR system called CFRTools, which features a CFR method based on a statistical shape model (SSM) of living human head models. Given an unidentified skull, a geometrically-similar template skull is chosen as a template, and a non-registration method is used to improve the accuracy of the construction of dense corresponding vertices through the alignment of the template and the unidentified skull. Generalized Procrustes analysis (GPA) and principal component analysis (PCA) are carried out to construct the skull and face SSMs. The sex of the unidentified skull is then predicted based on skull SSM and centroid size, rather than geometric measurements based on anatomical landmarks. Furthermore, a craniofacial morphological relationship which is learnt from the principal component (PC) scores of the skull and face dataset is used to produce a possible reconstructed face. Finally, multiple possible reconstructed faces for the same skull can further be recreated based on adjusting the PC coefficients. The experimental results show that the average rate of sex classification is 97.14% and the reconstructed face of the unidentified skull can be produced. In addition, experts’ understanding and experience can be harnessed in production of face variations for the same skull, which can further be used as a reference for portraiture creation
Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop
In 1993, Przyklenk and colleagues made the intriguing experimental observation that 'brief ischemia in one vascular bed also protects remote, virgin myocardium from subsequent sustained coronary artery occlusion' and that this effect'... may be mediated by factor(s) activated, produced, or transported throughout the heart during brief ischemia/reperfusion'. This seminal study laid the foundation for the discovery of 'remote ischemic conditioning' (RIC), a phenomenon in which the heart is protected from the detrimental effects of acute ischemia/reperfusion injury (IRI), by applying cycles of brief ischemia and reperfusion to an organ or tissue remote from the heart. The concept of RIC quickly evolved to extend beyond the heart, encompassing inter-organ protection against acute IRI. The crucial discovery that the protective RIC stimulus could be applied non-invasively, by simply inflating and deflating a blood pressure cuff placed on the upper arm to induce cycles of brief ischemia and reperfusion, has facilitated the translation of RIC into the clinical setting. Despite intensive investigation over the last 20 years, the underlying mechanisms continue to elude researchers. In the 8th Biennial Hatter Cardiovascular Institute Workshop, recent developments in the field of RIC were discussed with a focus on new insights into the underlying mechanisms, the diversity of non-cardiac protection, new clinical applications, and large outcome studies. The scientific advances made in this field of research highlight the journey that RIC has made from being an intriguing experimental observation to a clinical application with patient benefit
Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography
Skeletal muscle operates as a near-constant volume system; as such muscle shortening during contraction is transversely linked to radial deformation. Therefore, to assess contractile properties of skeletal muscle, radial displacement can be evoked and measured. Mechanomyography measures muscle radial displacement and during the last 20 years, tensiomyography has become the most commonly used and widely reported technique among the various methodologies of mechanomyography. Tensiomyography has been demonstrated to reliably measure peak radial displacement during evoked muscle twitch, as well as muscle twitch speed. A number of parameters can be extracted from the tensiomyography displacement/time curve and the most commonly used and reliable appear to be peak radial displacement and contraction time. The latter has been described as a valid non-invasive means of characterising skeletal muscle, based on fibre-type composition. Over recent years, applications of tensiomyography measurement within sport and exercise have appeared, with applications relating to injury, recovery and performance. Within the present review, we evaluate the perceived strengths and weaknesses of tensiomyography with regard to its efficacy within applied sports medicine settings. We also highlight future tensiomyography areas that require further investigation. Therefore, the purpose of this review is to critically examine the existing evidence surrounding tensiomyography as a tool within the field of sports medicine
Ground reaction force differences in the countermovement jump in girls with different levels of performance
Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M age = 6.3 ± 0.8 years) and high-scoring (HIGH; M age = 6.6 ± 0.8 years) groups based on their performance on the vertical jump. The force-, velocity-, displacement-, and rate of force development (RFD)-time curves of vertical jumps were analyzed to determine the differences between groups. Results: The analysis of the data showed differences in the pattern of the ensemble mean curves of the HIGH and LOW groups, although the majority of the differences occurred during the eccentric contraction phase of the jump. The differences in the HIGH group with respect to the LOW group were: lower force at the beginning of the movement, higher speed and RFD during the eccentric phase, high force at the beginning of the concentric phase, higher velocity during the concentric phase, and a higher position at takeoff. Conclusion: The results showed that the HIGH group achieved a higher jump height than did the LOW group by increasing the effectiveness of the countermovement and achieving a more advantageous position at takeoff.Centro de Investigación en Rendimiento Físico y Deportiv
Recommended from our members
Cardiomyocyte BRAF and type 1 RAF inhibitors promote cardiomyocyte and cardiac hypertrophy in mice in vivo
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade promotes cardiomyocyte hypertrophy and is cardioprotective, with the three RAF kinases forming a node for signal integration. Our aims were to determine if BRAF is relevant for human heart failure, whether BRAF promotes cardiomyocyte hypertrophy, and if Type 1 RAF inhibitors developed for cancer (that paradoxically activate ERK1/2 at low concentrations: the “RAF paradox”) may have the same effect. BRAF was upregulated in heart samples from patients with heart failure compared with normal controls. We assessed the effects of activated BRAF in the heart using mice with tamoxifen-activated Cre for cardiomyocyte-specific knock-in of the activating V600E mutation into the endogenous gene. We used echocardiography to measure cardiac dimensions/function. Cardiomyocyte BRAFV600E induced cardiac hypertrophy within 10 d, resulting in increased ejection fraction and fractional shortening over 6 weeks. This was associated with increased cardiomyocyte size without significant fibrosis, consistent with compensated hypertrophy. The experimental Type 1 RAF inhibitor, SB590885, and/or encorafenib (a RAF inhibitor used clinically) increased ERK1/2 phosphorylation in cardiomyocytes, and promoted hypertrophy, consistent with a “RAF paradox” effect. Both promoted cardiac hypertrophy in mouse hearts in vivo, with increased cardiomyocyte size and no overt fibrosis. In conclusion, BRAF potentially plays an important role in human failing hearts, activation of BRAF is sufficient to induce hypertrophy, and Type 1 RAF inhibitors promote hypertrophy via the “RAF paradox”. Cardiac hypertrophy resulting from these interventions was not associated with pathological features, suggesting that Type 1 RAF inhibitors may be useful to boost cardiomyocyte function
- …
