8,732 research outputs found

    The information content of gravitational wave harmonics in compact binary inspiral

    Get PDF
    The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics. We use an order (4/2) post-Newtonian expansion of the gravitational wave waveform of a binary system to model the signal seen in a spaceborne gravitational wave detector such as the proposed LISA detector. Covariance studies are then performed to determine the ultimate accuracy to be expected when the parameters of the source are fit to the received signal. We find three areas where the higher harmonics contribute crucial information that breaks degeneracies in the model and allows otherwise badly-correlated parameters to be separated and determined. First, we find that the position of a coalescing massive black hole binary in an ecliptic plane detector, such as OMEGA, is well-determined with the help of these harmonics. Second, we find that the individual masses of the stars in a chirping neutron star binary can be separated because of the mass dependence of the harmonic contributions to the wave. Finally, we note that supermassive black hole binaries, whose frequencies are too low to be seen in the detector sensitivity window for long, may still have their masses, distances, and positions determined since the information content of the higher harmonics compensates for the information lost when the orbit-induced modulation of the signal does not last long enough to be apparent in the data.Comment: 13 pages, 5 figure

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings

    A Bayesian approach to the follow-up of candidate gravitational wave signals

    Full text link
    Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo and Tama-300) have now reached high sensitivity and duty cycle. We present a Bayesian evidence-based approach to the search for gravitational waves, in particular aimed at the followup of candidate events generated by the analysis pipeline. We introduce and demonstrate an efficient method to compute the evidence and odds ratio between different models, and illustrate this approach using the specific case of the gravitational wave signal generated during the inspiral phase of binary systems, modelled at the leading quadrupole Newtonian order, in synthetic noise. We show that the method is effective in detecting signals at the detection threshold and it is robust against (some types of) instrumental artefacts. The computational efficiency of this method makes it scalable to the analysis of all the triggers generated by the analysis pipelines to search for coalescing binaries in surveys with ground-based interferometers, and to a whole variety of signal waveforms, characterised by a larger number of parameters.Comment: 9 page

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    The clustering of polarity reversals of the geomagnetic field

    Full text link
    Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely the temporal distribution of polarity reversals of the geomagnetic field. In spite of the commonly used underlying hypothesis, we show that this process strongly departs from a Poisson statistics, the origin of this failure stemming from the presence of temporal clustering. We find that a Levy statistics is able to reproduce paleomagnetic data, thus suggesting the presence of long-range correlations in the underlying dynamo process.Comment: 4 pages, in press on PRL (31 march 2006?

    Classification of human actions into dynamics based primitives with application to drawing tasks

    Get PDF
    We develop the study of primitives of human motion, which we refer to as movemes. The idea is to understand human motion by decomposing it into a sequence of elementary building blocks that belong to a known alphabet of dynamical systems. How can we construct an alphabet of movemes from human data? In this paper we address this issue by introducing the notion of well-posednes. Using examples from human drawing data, we show that the well-posedness notion can be applied in practice so to establish if sets of actions, viewed as signals in time, can define movemes

    Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009

    Get PDF
    A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys

    LISA data analysis: The monochromatic binary detection and initial guess problems

    Full text link
    We consider the detection and initial guess problems for the LISA gravitational wave detector. The detection problem is the problem of how to determine if there is a signal present in instrumental data and how to identify it. Because of the Doppler and plane-precession spreading of the spectral power of the LISA signal, the usual power spectrum approach to detection will have difficulty identifying sources. A better method must be found. The initial guess problem involves how to generate {\it a priori} values for the parameters of a parameter-estimation problem that are close enough to the final values for a linear least-squares estimator to converge to the correct result. A useful approach to simultaneously solving the detection and initial guess problems for LISA is to divide the sky into many pixels and to demodulate the Doppler spreading for each set of pixel coordinates. The demodulated power spectra may then be searched for spectral features. We demonstrate that the procedure works well as a first step in the search for gravitational waves from monochromatic binaries.Comment: 8 pages, 8 figure
    corecore