33,829 research outputs found

    A class of quantum many-body states that can be efficiently simulated

    Get PDF
    We introduce the multi-scale entanglement renormalization ansatz (MERA), an efficient representation of certain quantum many-body states on a D-dimensional lattice. Equivalent to a quantum circuit with logarithmic depth and distinctive causal structure, the MERA allows for an exact evaluation of local expectation values. It is also the structure underlying entanglement renormalization, a coarse-graining scheme for quantum systems on a lattice that is focused on preserving entanglement.Comment: 4 pages, 5 figure

    Characterizing topological order by studying the ground states of an infinite cylinder

    Full text link
    Given a microscopic lattice Hamiltonian for a topologically ordered phase, we describe a tensor network approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory. First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of infinite length and finite width is obtained through numerical optimization. Each of these ground states is argued to have a different anyonic flux threading through the cylinder. In a chiral phase, the entanglement spectrum of each ground state is seen to reveal a different sector of the corresponding gapless edge theory. A quasi-orthogonal basis on the torus is then produced by chopping off and reconnecting the tensor network representation on the cylinder. Elaborating on the recent proposal of [Y. Zhang et al. Phys. Rev. B 85, 235151 (2012)], a rotation on the torus yields an alternative basis of ground states and, through the computation of overlaps between bases, the modular matrices S and U (containing the mutual and self statistics of the different anyon species) are extracted. As an application, we study the hard-core boson Haldane model by using the two-dimensional density matrix renormalization group. A thorough characterization of the universal properties of this lattice model, both in the bulk and at the edge, unambiguously shows that its ground space realizes the \nu=1/2 bosonic Laughlin state.Comment: 10 pages, 11 figure

    Non-local scaling operators with entanglement renormalization

    Get PDF
    The multi-scale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry G\mathcal{G}, it is also possible to determine a class of non-local scaling operators. Each operator consist, for a given group element gGg\in\mathcal{G}, of a semi-infinite string \tGamma_g with a local operator ϕ\phi attached to its open end. In the case of the quantum Ising model, G=Z2\mathcal{G}= \mathbb{Z}_2, they correspond to the disorder operator μ\mu, the fermionic operators ψ\psi and ψˉ\bar{\psi}, and all their descendants. Together with the local scaling operators identity I\mathbb{I}, spin σ\sigma and energy ϵ\epsilon, the fermionic and disorder scaling operators ψ\psi, ψˉ\bar{\psi} and μ\mu are the complete list of primary fields of the Ising CFT. Thefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.Comment: 4 pages, 4 figures. Revised versio

    Baryon polarization in low-energy unpolarized meson-baryon scattering

    Full text link
    We compute the polarization of the final-state baryon, in its rest frame, in low-energy meson--baryon scattering with unpolarized initial state, in Unitarized BChPT. Free parameters are determined by fitting total and differential cross-section data (and spin-asymmetry or polarization data if available) for pKpK^-, pK+pK^+ and pπ+p\pi^+ scattering. We also compare our results with those of leading-order BChPT

    Fast convergence of imaginary time evolution tensor network algorithms by recycling the environment

    Get PDF
    We propose an environment recycling scheme to speed up a class of tensor network algorithms that produce an approximation to the ground state of a local Hamiltonian by simulating an evolution in imaginary time. Specifically, we consider the time-evolving block decimation (TEBD) algorithm applied to infinite systems in 1D and 2D, where the ground state is encoded, respectively, in a matrix product state (MPS) and in a projected entangled-pair state (PEPS). An important ingredient of the TEBD algorithm (and a main computational bottleneck, especially with PEPS in 2D) is the computation of the so-called environment, which is used to determine how to optimally truncate the bond indices of the tensor network so that their dimension is kept constant. In current algorithms, the environment is computed at each step of the imaginary time evolution, to account for the changes that the time evolution introduces in the many-body state represented by the tensor network. Our key insight is that close to convergence, most of the changes in the environment are due to a change in the choice of gauge in the bond indices of the tensor network, and not in the many-body state. Indeed, a consistent choice of gauge in the bond indices confirms that the environment is essentially the same over many time steps and can thus be re-used, leading to very substantial computational savings. We demonstrate the resulting approach in 1D and 2D by computing the ground state of the quantum Ising model in a transverse magnetic field.Comment: 17 pages, 28 figure

    The resolved structure of the extragalactic supernova remnant SNR 4449-1

    Get PDF
    We present very long baseline interferometry (VLBI) observations of the milliarcsecond-scale radio structure of the supernova remnant SNR 4449-1 in the galaxy NGC 4449. This young and superluminous remnant was observed at 1.6 GHz (λ=18\lambda = 18\,cm) with the European VLBI Network. The observations confirm earlier identifications of this object with a supernova remnant (SNR) while revealing a somewhat different morphology compared with the structure reported by Bietenholz et al. from VLBI observations at 1.4 GHz. This difference is discussed here in the context of structural sensitivity of both observations. The 1.6 GHz image yields accurate estimates of the size (0.0422 arcsec ×\times 0.0285 arcsec and 0.8 ×\times 0.5 pc) and age (\sim55 yr) of SNR 4449-1. With a total flux of 6.1 ±\pm 0.6 mJy measured in the VLBI image, the historical lightcurve of the source can be well represented by a power-law decay with a power index of -1.19 ±\pm 0.07. The SNR exhibits a decline rate of the radio emission of 2.2% ±\pm 0.1% yr1^{-1} and a radio luminosity of 1.74 ×\times 1035^{35} erg s1^{-1}.Comment: 7 pages, 6 figures, MNRAS preprint, arXiv:1309.401

    Entanglement renormalization

    Get PDF
    In the context of real-space renormalization group methods, we propose a novel scheme for quantum systems defined on a D-dimensional lattice. It is based on a coarse-graining transformation that attempts to reduce the amount of entanglement of a block of lattice sites before truncating its Hilbert space. Numerical simulations involving the ground state of a 1D system at criticality show that the resulting coarse-grained site requires a Hilbert space dimension that does not grow with successive rescaling transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each rellevant length scale makes an equivalent contribution to the entanglement of a block with the rest of the system.Comment: 4 pages, 4 figures, updated versio
    corecore