164 research outputs found
Observation of magnetization reversal in epitaxial Gd0.67Ca0.33MnO3 thin films
High quality epitaxial thin films of Gd0.67Ca0.33MnO3 have been deposited
onto (100) SrTiO3 substrates by pulsed-laser deposition. Enhanced properties in
comparison with bulk samples were observed. The magnetic transition temperature
(Tc) of the as-grown films is much higher than the corresponding bulk values.
Most interestingly, magnetization measurements performed under small applied
fields, exhibit magnetization reversals below Tc, no matter whether the film is
field-cooled (FC) or zero-field-cooled (ZFC). A rapid magnetization reversal
occurs at 7 K when field cooled, while as for the ZFC process the magnetization
decreases gradually with increasing temperatures, taking negative values above
7 K and changing to positive values again, above 83 K. In higher magnetic
fields the magnetization does not change sign. The reversal mechanism is
discussed in terms of a negative exchange f-d interaction and magnetic
anisotropy, this later enhanced by strain effects induced by the lattice
mismatch between the film and the substrate.Comment: 16 pages, 4 figure
Rewriting Logic Semantics of a Plan Execution Language
The Plan Execution Interchange Language (PLEXIL) is a synchronous language
developed by NASA to support autonomous spacecraft operations. In this paper,
we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance
logical engine. The rewriting logic semantics is by itself a formal interpreter
of the language and can be used as a semantic benchmark for the implementation
of PLEXIL executives. The implementation in Maude has the additional benefit of
making available to PLEXIL designers and developers all the formal analysis and
verification tools provided by Maude. The formalization of the PLEXIL semantics
in rewriting logic poses an interesting challenge due to the synchronous nature
of the language and the prioritized rules defining its semantics. To overcome
this difficulty, we propose a general procedure for simulating synchronous set
relations in rewriting logic that is sound and, for deterministic relations,
complete. We also report on two issues at the design level of the original
PLEXIL semantics that were identified with the help of the executable
specification in Maude
Soundness of Unravelings for Conditional Term Rewriting Systems via Ultra-Properties Related to Linearity
Unravelings are transformations from a conditional term rewriting system
(CTRS, for short) over an original signature into an unconditional term
rewriting systems (TRS, for short) over an extended signature. They are not
sound w.r.t. reduction for every CTRS, while they are complete w.r.t.
reduction. Here, soundness w.r.t. reduction means that every reduction sequence
of the corresponding unraveled TRS, of which the initial and end terms are over
the original signature, can be simulated by the reduction of the original CTRS.
In this paper, we show that an optimized variant of Ohlebusch's unraveling for
a deterministic CTRS is sound w.r.t. reduction if the corresponding unraveled
TRS is left-linear or both right-linear and non-erasing. We also show that
soundness of the variant implies that of Ohlebusch's unraveling. Finally, we
show that soundness of Ohlebusch's unraveling is the weakest in soundness of
the other unravelings and a transformation, proposed by Serbanuta and Rosu, for
(normal) deterministic CTRSs, i.e., soundness of them respectively implies that
of Ohlebusch's unraveling.Comment: 49 pages, 1 table, publication in Special Issue: Selected papers of
the "22nd International Conference on Rewriting Techniques and Applications
(RTA'11)
Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route
International audienceZinc-gallium oxynitride powders (ZnGaON) were synthesized by nitridation of ZnGa2O4 oxide precursor obtained by polymeric precursors (PP) and solid state reaction (SSR) methods and the influence of the synthesis route of ZnGa2O4 on the final compound ZnGaON was investigated. Crystalline single phase ZnGa2O4 was obtained at 1100 oC / 12 h by SSR and at 600 oC / 2 h by PP with different grain sizes and specific surface areas according to the synthesis route. After nitridation, ZnGaON oxynitrides with a GaN würtzite-type structure were obtained in both cases, however at lower temperatures for PP samples. The microstructure and the specific surface area were strongly dependent on the oxide synthesis method and on the nitridation temperature (42 m2g-1 and 5 m2g-1 for PP and SSR oxides treated at 700 °C, respectively). The composition analyses showed a strong loss of Zn for the PP samples, favored by the increase of ammonolysis temperature and by the higher specific surface area
Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples
Language Definitions as Rewrite Theories
(To appear in Springer LNCS)International audienceK is a formal framework for defining the operational semantics of programming languages. It includes software tools for compiling K language definitions to Maude rewrite theories, for executing programs in the defined languages based on the Maude rewriting engine, and for analyzing programs by adapting various Maude analysis tools. A recent extension to the K tool suite is an automatic transformation of language definitions that enables the symbolic execution of programs, i.e., the execution of programs with symbolic inputs. In this paper we investigate the theoretical relationships between K language definitions and their translations to Maude, between symbolic extensions of K definitions and their Maude encodings, and how the relations between K definitions and their symbolic extensions are reflected on their respective representations in Maude. These results show, in particular, how analyses performed with Maude tools can be formally lifted up to the original language definitions
Postural development in school children: a cross-sectional study
BACKGROUND: Little information on quantitative sagittal plane postural alignment and evolution in children exists. The objectives of this study are to document the evolution of upright, static, sagittal posture in children and to identify possible critical phases of postural evolution (maturation). METHODS: A total of 1084 children (aged 4–12 years) received a sagittal postural evaluation with the Biotonix postural analysis system. Data were retrieved from the Biotonix internet database. Children were stratified and analyzed by years of age with n = 36 in the youngest age group (4 years) and n = 184 in the oldest age group (12 years). Children were analyzed in the neutral upright posture. Variables measured were sagittal translation distances in millimeters of: the knee relative to the tarsal joint, pelvis relative to the tarsal joint, shoulder relative to the tarsal joint, and head relative to the tarsal joint. A two-way factorial ANOVA was used to test for age and gender effects on posture, while polynomial trend analyses were used to test for increased postural displacements with years of age. RESULTS: Two-way ANOVA yielded a significant main effect of age for all 4 sagittal postural variables and gender for all variables except head translation. No age × gender interaction was found. Polynomial trend analyses showed a significant linear association between child age and all four postural variables: anterior head translation (p < 0.001), anterior shoulder translation (p < 0.001), anterior pelvic translation (p < 0.001), anterior knee translation (p < 0.001). Between the ages of 11 and 12 years, for anterior knee translation, T-test post hoc analysis revealed only one significant rough break in the continuity of the age related trend. CONCLUSION: A significant linear trend for increasing sagittal plane postural translations of the head, thorax, pelvis, and knee was found as children age from 4 years to 12 years. These postural translations provide preliminary normative data for the alignment of a child's sagittal plane posture
Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission
Many animal and plant viruses rely on vectors for their transmission from host to
host. Grapevine fanleaf virus (GFLV), a picorna-like virus from
plants, is transmitted specifically by the ectoparasitic nematode
Xiphinema index. The icosahedral capsid of GFLV, which
consists of 60 identical coat protein subunits (CP), carries the determinants of
this specificity. Here, we provide novel insight into GFLV transmission by
nematodes through a comparative structural and functional analysis of two GFLV
variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by
nematodes, and showed that the transmission defect is due to a glycine to
aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the
crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of
GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed
loop at the outer surface of the capsid and did not affect the conformation of
the assembled capsid, nor of individual CP molecules. The loop is part of a
positively charged pocket that includes a previously identified determinant of
transmission. We propose that this pocket is a ligand-binding site with
essential function in GFLV transmission by X. index. Our data
suggest that perturbation of the electrostatic landscape of this pocket affects
the interaction of the virion with specific receptors of the nematode's
feeding apparatus, and thereby severely diminishes its transmission efficiency.
These data provide a first structural insight into the interactions between a
plant virus and a nematode vector
- …
