13 research outputs found

    The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity

    Get PDF
    Psychedelics have emerged as promising candidate treatments for various psychiatric conditions, and given their clinical potential, there is a need to identify biomarkers that underlie their effects. Here, we investigate the neural mechanisms of lysergic acid diethylamide (LSD) using regression dynamic causal modelling (rDCM), a novel technique that assesses whole-brain effective connectivity (EC) during resting-state functional magnetic resonance imaging (fMRI). We modelled data from two randomised, placebo-controlled, double-blind, cross-over trials, in which 45 participants were administered 100 μg LSD and placebo in two resting-state fMRI sessions. We compared EC against whole-brain functional connectivity (FC) using classical statistics and machine learning methods. Multivariate analyses of EC parameters revealed predominantly stronger interregional connectivity and reduced self-inhibition under LSD compared to placebo, with the notable exception of weakened interregional connectivity and increased self-inhibition in occipital brain regions as well as subcortical regions. Together, these findings suggests that LSD perturbs the Excitation/Inhibition balance of the brain. Notably, whole-brain EC did not only provide additional mechanistic insight into the effects of LSD on the Excitation/Inhibition balance of the brain, but EC also correlated with global subjective effects of LSD and discriminated experimental conditions in a machine learning-based analysis with high accuracy (91.11%), highlighting the potential of using whole-brain EC to decode or predict subjective effects of LSD in the future

    Pharmacology of MDMA- and Amphetamine-Like New Psychoactive Substances

    Get PDF
    New psychoactive substances (NPS) with amphetamine-, aminoindan-, and benzofuran basic chemical structures have recently emerged for recreational drug use. Detailed information about their psychotropic effects and health risks is often limited. At the same time, it emerged that the pharmacological profiles of these NPS resemble those of amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). Amphetamine-like NPS induce psychostimulation and euphoria mediated predominantly by norepinephrine (NE) and dopamine (DA) transporter (NET and DAT) inhibition and transporter-mediated release of NE and DA, thus showing a more catecholamine-selective profile. MDMA-like NPS frequently induce well-being, empathy, and prosocial effects and have only moderate psychostimulant properties. These MDMA-like substances primarily act by inhibiting the serotonin (5-HT) transporter (SERT) and NET, also inducing 5-HT and NE release. Monoamine receptor interactions vary considerably among amphetamine- and MDMA-like NPS. Clinically, amphetamine- and MDMA-like NPS can induce sympathomimetic toxicity. The aim of this chapter is to review the state of knowledge regarding these substances with a focus on the description of the in vitro pharmacology of selected amphetamine- and MDMA-like NPS. In addition, it is aimed to provide links between pharmacological profiles and in vivo effects and toxicity, which leads to the conclusion that abuse liability for amphetamine-like NPS may be higher than for MDMA-like NPS, but that the risk for developing the life-threatening serotonin syndrome may be increased for MDMA-like NPS

    MDMA-assisted psychotherapy for PTSD:Growing evidence for memory effects mediating treatment efficacy

    No full text
    The application of MDMA in conjunction with psychotherapy has in recent years seen a resurgence of clinical, scientific, and public interest in the treatment of posttraumatic stress disorder (PTSD). Clinical trials have shown promising safety and efficacy, but the mechanisms underlying this treatment form remain largely unestablished. This article explores recent preclinical and clinical evidence suggesting that the treatment's efficacy may be influenced by the mnemonic effects of MDMA. We review data on the effects of MDMA on fear extinction and fear reconsolidation and the utility of these processes for PTSD treatment. We corroborate our findings by incorporating research from cognitive psychology and psychopharmacology and offer recommendations for future research

    Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects

    No full text
    Background: 3,4-Methylenedioxymethamphetamine (MDMA) has shown initial promise as an adjunct in psychotherapy to treat posttraumatic stress disorder (PTSD). Its efficacy and safety have been demonstrated across phase I–III studies. However, the mechanism underlying the potential utility of MDMA to treat PTSD in humans has not yet been thoroughly investigated. Preliminary evidence suggests that MDMA may facilitate fear extinction recall, which may be through the release of oxytocin. To test this hypothesis, we examined the efficacy of acute MDMA treatment to enhance fear extinction learning and recall.Methods: We used a two-period, double-blind, randomized, placebo-controlled crossover design in 30 healthy male subjects who received a placebo and a single dose of MDMA (125 mg). Fear extinction was tested using two separate Pavlovian fear conditioning paradigms, one using skin conductance response (SCR), and the other fear-potentiated startle (FPS) to conditioned cues. MDMA treatment occurred after fear conditioning and 2 h before extinction learning. Extinction recall was tested 23 h after MDMA intake. Additional outcome measures included subjective effects, emotion recognition tasks, plasma levels of oxytocin, and pharmacokinetics.Results: Fear conditioning and extinction learning were successful in both fear extinction paradigms (generalized eta–squared [ges] for SCR: 0.08; FPS: 0.07). Compared to placebo treatment, MDMA treatment significantly reduced SCRs to the reinforced conditioned stimulus (CS+) during extinction learning (ges = 0.03) and recall (ges = 0.06). Intensity of the subjective effects of MDMA (good effect, trust, and openness) during extinction learning negatively correlated with the discrimination between CS+ and the safety stimulus (CS−) during recall. MDMA did not influence FPS to conditioned cues. Oxytocin concentration was increased fourfold on average by MDMA during acute effects but was not associated with fear extinction outcomes.Conclusions: MDMA treatment facilitated rapid fear extinction and retention of extinction as measured by SCR to fear cues, in line with animal studies of MDMA facilitation of extinction. However, this effect may be limited to certain forms of learned fear responses, as it was not observed in the extinction model using startle reactivity as the outcome. This study provides further evidence for the facilitation of extinction with MDMA treatment and suggests this may be a component of its efficacy when paired with psychotherapy.Clinical Trial registration:clinicaltrials.gov identifier: NCT03527316</jats:p

    DataSheet1_Effects of 3,4-Methylenedioxymethamphetamine on Conditioned Fear Extinction and Retention in a Crossover Study in Healthy Subjects.docx

    No full text
    Background: 3,4-Methylenedioxymethamphetamine (MDMA) has shown initial promise as an adjunct in psychotherapy to treat posttraumatic stress disorder (PTSD). Its efficacy and safety have been demonstrated across phase I–III studies. However, the mechanism underlying the potential utility of MDMA to treat PTSD in humans has not yet been thoroughly investigated. Preliminary evidence suggests that MDMA may facilitate fear extinction recall, which may be through the release of oxytocin. To test this hypothesis, we examined the efficacy of acute MDMA treatment to enhance fear extinction learning and recall.Methods: We used a two-period, double-blind, randomized, placebo-controlled crossover design in 30 healthy male subjects who received a placebo and a single dose of MDMA (125 mg). Fear extinction was tested using two separate Pavlovian fear conditioning paradigms, one using skin conductance response (SCR), and the other fear-potentiated startle (FPS) to conditioned cues. MDMA treatment occurred after fear conditioning and 2 h before extinction learning. Extinction recall was tested 23 h after MDMA intake. Additional outcome measures included subjective effects, emotion recognition tasks, plasma levels of oxytocin, and pharmacokinetics.Results: Fear conditioning and extinction learning were successful in both fear extinction paradigms (generalized eta–squared [ges] for SCR: 0.08; FPS: 0.07). Compared to placebo treatment, MDMA treatment significantly reduced SCRs to the reinforced conditioned stimulus (CS+) during extinction learning (ges = 0.03) and recall (ges = 0.06). Intensity of the subjective effects of MDMA (good effect, trust, and openness) during extinction learning negatively correlated with the discrimination between CS+ and the safety stimulus (CS−) during recall. MDMA did not influence FPS to conditioned cues. Oxytocin concentration was increased fourfold on average by MDMA during acute effects but was not associated with fear extinction outcomes.Conclusions: MDMA treatment facilitated rapid fear extinction and retention of extinction as measured by SCR to fear cues, in line with animal studies of MDMA facilitation of extinction. However, this effect may be limited to certain forms of learned fear responses, as it was not observed in the extinction model using startle reactivity as the outcome. This study provides further evidence for the facilitation of extinction with MDMA treatment and suggests this may be a component of its efficacy when paired with psychotherapy.Clinical Trial registration:clinicaltrials.gov identifier: NCT03527316</p

    Oxytocin receptor gene variations and socio-emotional effects of MDMA: A pooled analysis of controlled studies in healthy subjects

    Get PDF
    <div><p>Methylenedioxymethamphetamine (MDMA) increases oxytocin, empathy, and prosociality. Oxytocin plays a critical role in emotion processing and social behavior and has been shown to mediate the prosocial effects of MDMA in animals. Genetic variants, such as single-nucleotide polymorphisms (SNPs), of the oxytocin receptor (OXTR) may influence the emotional and social effects of MDMA in humans. The effects of common genetic variants of the OXTR (<i>rs53576</i>, <i>rs1042778</i>, and <i>rs2254298</i> SNPs) on the emotional, empathogenic, and prosocial effects of MDMA were characterized in up to 132 healthy subjects in a pooled analysis of eight double-blind, placebo-controlled studies. In a subset of 53 subjects, MDMA produced significantly greater feelings of trust in <i>rs1042778</i> TT genotypes compared with G allele carriers. The <i>rs53576</i> and <i>rs225498</i> SNPs did not moderate the subjective effects of MDMA in up to 132 subjects. None of the SNPs moderated MDMA-induced impairments in negative facial emotion recognition or enhancements in emotional empathy in the Multifaceted Empathy Test in 69 subjects. MDMA significantly increased plasma oxytocin concentrations. MDMA and oxytocin concentrations did not differ between OXTR gene variants. The present results provide preliminary evidence that OXTR gene variations may modulate aspects of the prosocial subjective effects of MDMA in humans. However, interpretation should be cautious due to the small sample size. Additionally, OXTR SNPs did not moderate the subjective overall effect of MDMA (any drug effect) or feelings of “closeness to others”.</p><p><b>Trial registration:</b> ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/" target="_blank">http://www.clinicaltrials.gov</a>, No: NCT00886886, NCT00990067, NCT01136278, NCT01270672, NCT01386177, NCT01465685, NCT01771874, and NCT01951508.</p></div
    corecore