67 research outputs found

    Effect of Heat Treatment Temperature on Isothermal Oxidation of Ni-based Fe-33Ni-19Cr Alloy

    Get PDF
    This project studies the influence of different grain sizes of Ni-based Fe-33Ni-19Cr alloy obtained from heat treatment procedure on high temperature isothermal oxidation. Heat treatment procedure was carried out at two different temperatures, namely 1000℃ and 1200℃ for 3 hours of soaking time, followed by quenching in the water. These samples are denoted as T1000 and T1200. The heat-treated Ni-based Fe-33Ni-19Cr alloy was subjected to an isothermal oxidation test at 950℃ for 150 hours exposure. Oxidized heat-treated alloys were tested in terms of oxidation kinetics, phase analysis and surface morphology of oxidized samples. Oxidation kinetics were determine based on weight change per surface area as a function of exposure time. Phase analysis was determined using the x-ray diffraction (XRD) technique and surface morphology of oxidized samples was characterized using a scanning electron microscope (SEM). As a result, the heat treatment procedure shows varying grain sizes. The higher the heat treatment temperature, shows an increase in grain size with a decrease in hardness value. The oxidation kinetics for both heat-treated samples showed an increment pattern of weight change and followed a parabolic rate law. The oxidized T1000 sample recorded the lowest parabolic rate constant of 3.12×10–8 mg2cm–4s–1, indicating a low oxidation rate, thus having good oxidation resistance. Phase analysis from the XRD technique recorded several oxide phases consisting of Cr2O3, MnCr2O4, and (Ti0.97Cr0.03)O2 oxide phases. In addition, a uniform oxide layer is formed on the oxidized T1000 sample, indicating good oxide scale adhesion, thereby improving the protective oxide behavior

    Comparison of the Properties of Cold Work Tool Steels with the Same Hardness but Different Manufacturing Processes The required important properties

    Get PDF
    The required important properties of cold work tool steels are hardness, wear resistance, suitable toughness and in many cases corrosion resistance. For cold work tool steels, hardness can be well controlled by heat treatment, but steels of the same hardness do not necessarily have similar wear, corrosion resistance or even toughness. These properties are influenced by the chemical composition of the steels and their manufacturing processes. The study is performed on Böhler K390 PM produced by powder metallurgy (PM) process, Böhler K360 ESR made by electro-slag remelting (ESR) methods and Böhler K110 produced conventionally (C). The specimens were heat treated to obtain the same hardness of 61 HRC. It was made a comparative test of the abrasive wear resistance, corrosion resistance and toughness of the heat-treated cold work tool steel test specimens. The comparative test results show that the Böhler K110 steel has the best corrosion resistance against the 20% acetic acid, and the Böhler K390 PM steel has the best wear resistance and toughness. The goal of the research was to find the optimal cold work tool steel quality for special applications (as a function of wear resistance, corrosion resistance and toughness). The K390 reached the best wear resistance which is two times better than the K360 and about ten times better than the K110. About the corrosion test results, it can be concluded that K110 showed the lowest weight loss after the corrosion test, and the K390 and K360 showed higher weight loss and lower corrosion resistance. Impact energy values from the Charpy impact test were the highest in the case of K390 followed by the K360 and the K110. The results were confirmed by the microscopic analysis

    Solidification/stabilization technology for radioactive wastes using cement: an appraisal

    Get PDF
    Across the world, any activity associated with the nuclear fuel cycle such as nuclear facility operation and decommissioning that produces radioactive materials generates ultramodern civilian radioactive waste, which is quite hazardous to human health and the ecosystem. Therefore, the development of effectual and commanding management is the need of the hour to make certain the sustainability of the nuclear industries. During the management process of waste, its immobilization is one of the key activities conducted with a view to producing a durable waste form which can perform with sustainability for longer time frames. The cementation of radioactive waste is a widespread move towards its encapsulation, solidification, and finally disposal. Conventionally, Portland cement (PC) is expansively employed as an encapsulant material for storage, transportation and, more significantly, as a radiation safeguard to vigorous several radioactive waste streams. Cement solidification/stabilization (S/S) is the most widely employed treatment technique for radioactive wastes due to its superb structural strength and shielding effects. On the other hand, the eye-catching pros of cement such as the higher mechanical strength of the resulting solidified waste form, trouble-free operation and cost-effectiveness have attracted researchers to employ it most commonly for the immobilization of radionuclides. In the interest to boost the solidified waste performances, such as their mechanical properties, durability, and reduction in the leaching of radionuclides, vast attempts have been made in the past to enhance the cementation technology. Additionally, special types of cement were developed based on Portland cement to solidify these perilous radioactive wastes. The present paper reviews not only the solidification/stabilization technology of radioactive wastes using cement but also addresses the challenges that stand in the path of the design of durable cementitious waste forms for these problematical functioning wastes. In addition, the manuscript presents a review of modern cement technologies for the S/S of radioactive waste, taking into consideration the engineering attributes and chemistry of pure cement, cement incorporated with SCM, calcium sulpho–aluminate-based cement, magnesium-based cement, along with their applications in the S/S of hazardous radioactive wastes

    Behavior of Alkali-Activated Fly Ash through Underwater Placement

    Get PDF
    Underwater concrete is a cohesive self-consolidated concrete used for concreting underwater structures such as bridge piers. Conventional concrete used anti-washout admixture (AWA) to form a high-viscosity underwater concrete to minimise the dispersion of concrete material into the surrounding water. The reduction of quality for conventional concrete is mainly due to the washing out of cement and fine particles upon casting in the water. This research focused on the detailed investigations into the setting time, washout effect, compressive strength, and chemical composition analysis of alkali-activated fly ash (AAFA) paste through underwater placement in seawater and freshwater. Class C fly ash as source materials, sodium silicate, and sodium hydroxide solution as alkaline activator were used for this study. Specimens produced through underwater placement in seawater showed impressive performance with strength 71.10 MPa on 28 days. According to the Standard of the Japan Society of Civil Engineers (JSCE), the strength of specimens for underwater placement must not be lower than 80% of the specimen’s strength prepared in dry conditions. As result, the AAFA specimens only showed 12.11% reduction in strength compared to the specimen prepared in dry conditions, thus proving that AAFA paste has high potential to be applied in seawater and freshwater applications.</jats:p

    Surface characterization of new biomaterials

    Get PDF
    Link to publisher's homepage at https://iopscience.iop.org/This paper presents the characterization of new alloys CoCrMoSi6, CoCrMoSi7, CoCrMoSi10, in terms of hardness determinations, fractographic analysis and surface analysis. The original version of the alloy was obtained by casting process in a vacuum arc furnace. Experimental results obtained from this study confirms that by increasing content of silicon, the mechanical properties are superior and the positive results obtained at surface studies favoring the formation of compounds, that lead to the reduction of alloying grade for α solid solution and the plasticity of the alloys

    The Suitability of Photocatalyst Precursor Materials in Geopolymer Coating Applications: A Review

    Get PDF
    Today, the building and construction sector demands environmentally friendly and sustainable protective coatings using inorganic coating materials for safe, non-hazardous, and great performance. Many researchers have been working on sustainable solutions to protect concrete and metal infrastructures against corrosion and surface deterioration with the intention of introducing green alternatives to conventional coatings. This article presents a review of developments of geopolymer pastes doped with different types of photocatalyst precursors including factors affecting geopolymer properties for enhancing coating with photocatalytic performance. Photodegradation using geopolymer photocatalyst has great potential for resolving harmless substances and removing pollutants when energized with ultraviolet (UV) light. Although geopolymer is a potentially new material with great properties, there has been less research focusing on the development of this coating. This study demonstrated that geopolymer binders are ideal precursor support materials for the synthesis of photocatalytic materials, with a significant potential for optimizing their distinctive properties

    Synthesis and characterization of TiO₂/SiO₂ thin film via SolGel method

    Get PDF
    Link to publisher's homepage at https://iopscience.iop.org/TiO₂/SiO₂ thin films were prepared by sol-gel spin coating method. Structural, surface morphology and optical properties were investigated for different annealing temperatures at 300°C, 400°C and 500°C. X-ray diffraction pattern show that brookite TiO₂ crystalline phase with SiO₂ phase presence at 300°C. At higher temperatures of 400-500°C, the only phase presence was brookite. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films annealed at 300°C shows an agglomeration of small flaky with crack free. When the temperature of annealing increase to 400-500°C, the films with large flaky and large cracks film were formed which was due to surface tension between the film and the air during the drying process. The UV-Vis spectroscopy shows that the film exhibits a low transmittance around 30% which was due to the substrate is inhomogeneously covered by the films. In order to improve the coverage of the film on the substrate, it has to repeatable the spin coating to ensure the substrate is fully covered by the films
    corecore