8,292 research outputs found
Numerical Simulation for Solute Transport in Fractal Porous Media
A modified Fokker-Planck equation with continuous source for solute transport in fractal porous media is considered. The dispersion term of the governing equation uses a fractional-order derivative and the diffusion coefficient can be time and scale dependent. In this paper, numerical solution of the modified Fokker-Planck equation is proposed. The effects of different fractional orders and fractional power functions of time and distance are numerically investigated. The results show that motions with a heavy tailed marginal distribution can be modelled by equations that use fractional-order derivatives and/or time and scale dependent dispersivity
A Planarity Test via Construction Sequences
Optimal linear-time algorithms for testing the planarity of a graph are
well-known for over 35 years. However, these algorithms are quite involved and
recent publications still try to give simpler linear-time tests. We give a
simple reduction from planarity testing to the problem of computing a certain
construction of a 3-connected graph. The approach is different from previous
planarity tests; as key concept, we maintain a planar embedding that is
3-connected at each point in time. The algorithm runs in linear time and
computes a planar embedding if the input graph is planar and a
Kuratowski-subdivision otherwise
Convergence of the SMC implementation of the PHD filter
The probability hypothesis density (PHD) filter is a first moment approximation
to the evolution of a dynamic point process which can be used to approximate
the optimal filtering equations of the multiple-object tracking problem.
We show that, under reasonable assumptions, a sequential Monte Carlo (SMC) approximation
of the PHD filter converges in mean of order p ≥ 1, and hence almost
surely, to the true PHD filter. We also present a central limit theorem for the SMC
approximation, show that the variance is finite under similar assumptions and establish
a recursion for the asymptotic variance. This provides a theoretical justification for this implementation of a tractable multiple-object filtering methodology
and generalises some results from sequential Monte Carlo theory
Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams
Isogeometric analysis for functionally graded microplates based on modified couple stress theory
Analysis of static bending, free vibration and buckling behaviours of
functionally graded microplates is investigated in this study. The main idea is
to use the isogeometric analysis in associated with novel four-variable refined
plate theory and quasi-3D theory. More importantly, the modified couple stress
theory with only one material length scale parameter is employed to effectively
capture the size-dependent effects within the microplates. Meanwhile, the
quasi-3D theory which is constructed from a novel seventh-order shear
deformation refined plate theory with four unknowns is able to consider both
shear deformations and thickness stretching effect without requiring shear
correction factors. The NURBS-based isogeometric analysis is integrated to
exactly describe the geometry and approximately calculate the unknown fields
with higher-order derivative and continuity requirements. The convergence and
verification show the validity and efficiency of this proposed computational
approach in comparison with those existing in the literature. It is further
applied to study the static bending, free vibration and buckling responses of
rectangular and circular functionally graded microplates with various types of
boundary conditions. A number of investigations are also conducted to
illustrate the effects of the material length scale, material index, and
length-to-thickness ratios on the responses of the microplates.Comment: 57 pages, 14 figures, 18 table
Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida
Background: Fluensulfone is a new nematicide with an excellent profile of selective toxicity against plant parasitic nematodes. Here, its effects on the physiology and biochemistry of the potato cyst nematode Globodera pallida have been investigated and comparisons made with its effect on the life-span of the free-living nematode Caenorhabditis elegans to provide insight into its mode of action and its selective toxicity. Results: Fluensulfone exerts acute effects (≤ 1 h; ≥ 100 μM) on stylet thrusting and motility of hatched second stage G. pallida juveniles (J2s). Chronic exposure to lower concentrations of fluensulfone (≥ 3 days; ≤ 30 μM), reveals a slowly developing metabolic insult in which G. pallida J2s sequentially exhibit a reduction in motility, loss of a metabolic marker for cell viability, high lipid content and tissue degeneration prior to death. These effects are absent in adults and dauers of the model genetic nematode Caenorhabditis elegans. Conclusion: The nematicidal action of fluensulfone follows a time-course which progresses from an early impact on motility through to an accumulating metabolic impairment, an inability to access lipid stores and death
Foreword
This work reports on the performances of ohmic contacts fabricated on highly p-type doped 4H-SiC epitaxial layer selectively grown by vapor-liquid-solid transport. Due to the very high doping level obtained, the contacts have an ohmic behavior even without any annealing process. Upon variation of annealing temperatures, it was shown that both 500 and 800 °C annealing temperature lead to a minimum value of the Specific Contact Resistance (SCR) down to 1.3×10−6 Ω⋅cm2. However, a large variation of the minimum SCR values has been observed (up to 4×10−4 Ω⋅cm2). Possible sources of this fluctuation have been also discussed in this paper
Campagnes vietnamiennes et production rizicole
L'économie vietnamienne repose principalement sur l'agriculture dans laquelle la culture du riz est prédominante. Un projet financé par le Gouvernement belge a commencé en 1994, son objectif est de définir et de mettre en place des outils d'analyse en matière de politique agricole pour la filière rizicole. L'enquête de structure révèle une grande variabilité des conditions de production du riz annuelles variant de 1 à 3 selon les villages. Des caractéristiques socio-économiques générales ont pu être dégagées et sont présentées, ainsi que des données sur la rentabilité de la production, fournies par l'analyse de l'échantillon de 180 exploitations. Ce projet a permis de mettre en évidence la complexité des systèmes de production et la diversité des campagnes vietnamiennes. La prochaine étape s'orientera vers l'analyse temporelle des résultats fournis par l'observatoire constitué. Comme dans d'autres pays asiatiques, les décideurs vietnamiens doivent faire face à d'importantes questions en matière de politique agricole. L'observatoire constitué par l'échantillon d'exploitations permet d'alimenter la réflexion à partir de données quantitatives observées sur le terrai
Superdeformed rotational bands in the Mercury region; A Cranked Skyrme-Hartree-Fock-Bogoliubov study
A study of rotational properties of the ground superdeformed bands in \Hg{0},
\Hg{2}, \Hg{4}, and \Pb{4} is presented. We use the cranked
Hartree-Fock-Bogoliubov method with the {\skm} parametrization of the Skyrme
force in the particle-hole channel and a seniority interaction in the pairing
channel. An approximate particle number projection is performed by means of the
Lipkin-Nogami prescription. We analyze the proton and neutron quasiparticle
routhians in connection with the present information on about thirty presently
observed superdeformed bands in nuclei close neighbours of \Hg{2}.Comment: 26 LaTeX pages, 14 uuencoded postscript figures included, Preprint
IPN-TH 93-6
A continuous non-linear shadowing model of columnar growth
We propose the first continuous model with long range screening (shadowing)
that described columnar growth in one space dimension, as observed in plasma
sputter deposition. It is based on a new continuous partial derivative equation
with non-linear diffusion and where the shadowing effects apply on all the
different processes.Comment: Fast Track Communicatio
- …
